Flow between a stationary and a rotating disk shrouded by a co-rotating cylinder

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

Boundary layers on stationary and rotating disks have received much attention since von Kármán' s [Z. Angew. Math. Mech. 1, 233 (1921)] and Bödewadfs [Z. Angew. Math. Mech. 20, 241 (1940)] studies of the cases witfa disks of infinite radius. Theoretical treatments have focused on similarity treatments leading to conflicting ideas about existence and uniqueness, and where self-similar somtions exist, whether they are physically realizable. The coupling between the boundary layer flows and the interior flow between them, while being of practical importance in a variety of situations such as turbomachinery and ocean circulations, is not well understood. Here, a numerical treatment of the axisymmetric Navier-Stokes equations, together with some experiments for the case of finite stationary and rotating disks bounded by a co-rotating sidewall is presented. We show that in the long tune limit, solutions are steady and essentially self-similar. Yet the transients are not. In particular, axisymmetric waves propagate in die stationary disk boundary layer when the vortex lines entering the boundary layer develop inflection points, and there are subsequent eruptions of vortical flow out of the boundary layer deep into the interior at large Reynolds numbers.

Original languageEnglish (US)
Pages (from-to)2605-2613
Number of pages9
JournalPhysics of Fluids
Volume8
Issue number10
DOIs
StatePublished - Oct 1996
Externally publishedYes

ASJC Scopus subject areas

  • Computational Mechanics
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Flow between a stationary and a rotating disk shrouded by a co-rotating cylinder'. Together they form a unique fingerprint.

Cite this