Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser

David Popp, N. Duane Loh, Habiba Zorgati, Umesh Ghoshdastider, Lu Ting Liow, Magdalena I. Ivanova, Mårten Larsson, Daniel P. DePonte, Richard Bean, Kenneth R. Beyerlein, Cornelius Gati, Dominik Oberthuer, David Arnlund, Gisela Brändén, Peter Berntsen, Duilio Cascio, Leonard M.G. Chavas, Joe P.J. Chen, Ke Ding, Holger FleckensteinLars Gumprecht, Rajiv Harimoorthy, Estelle Mossou, Michael R. Sawaya, Aaron S. Brewster, Johan Hattne, Nicholas K. Sauter, Marvin Seibert, Carolin Seuring, Francesco Stellato, Thomas Tilp, David S. Eisenberg, Marc Messerschmidt, Garth J. Williams, Jason E. Koglin, Lee Makowski, Rick P. Millane, Trevor Forsyth, Sébastien Boutet, Thomas A. White, Anton Barty, Henry Chapman, Swaine L. Chen, Mengning Liang, Richard Neutze, Robert C. Robinson

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.

Original languageEnglish (US)
Pages (from-to)472-481
Number of pages10
JournalCytoskeleton
Volume74
Issue number12
DOIs
StatePublished - Dec 1 2017
Externally publishedYes

Fingerprint

Lasers
Amyloid
X-Rays
Electrons
Actins
Synucleins
Gelsolin
Radiation
Escherichia coli

Keywords

  • fiber diffraction
  • filament systems
  • XFEL

ASJC Scopus subject areas

  • Structural Biology
  • Cell Biology

Cite this

Popp, D., Loh, N. D., Zorgati, H., Ghoshdastider, U., Liow, L. T., Ivanova, M. I., ... Robinson, R. C. (2017). Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser. Cytoskeleton, 74(12), 472-481. https://doi.org/10.1002/cm.21378

Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser. / Popp, David; Loh, N. Duane; Zorgati, Habiba; Ghoshdastider, Umesh; Liow, Lu Ting; Ivanova, Magdalena I.; Larsson, Mårten; DePonte, Daniel P.; Bean, Richard; Beyerlein, Kenneth R.; Gati, Cornelius; Oberthuer, Dominik; Arnlund, David; Brändén, Gisela; Berntsen, Peter; Cascio, Duilio; Chavas, Leonard M.G.; Chen, Joe P.J.; Ding, Ke; Fleckenstein, Holger; Gumprecht, Lars; Harimoorthy, Rajiv; Mossou, Estelle; Sawaya, Michael R.; Brewster, Aaron S.; Hattne, Johan; Sauter, Nicholas K.; Seibert, Marvin; Seuring, Carolin; Stellato, Francesco; Tilp, Thomas; Eisenberg, David S.; Messerschmidt, Marc; Williams, Garth J.; Koglin, Jason E.; Makowski, Lee; Millane, Rick P.; Forsyth, Trevor; Boutet, Sébastien; White, Thomas A.; Barty, Anton; Chapman, Henry; Chen, Swaine L.; Liang, Mengning; Neutze, Richard; Robinson, Robert C.

In: Cytoskeleton, Vol. 74, No. 12, 01.12.2017, p. 472-481.

Research output: Contribution to journalArticle

Popp, D, Loh, ND, Zorgati, H, Ghoshdastider, U, Liow, LT, Ivanova, MI, Larsson, M, DePonte, DP, Bean, R, Beyerlein, KR, Gati, C, Oberthuer, D, Arnlund, D, Brändén, G, Berntsen, P, Cascio, D, Chavas, LMG, Chen, JPJ, Ding, K, Fleckenstein, H, Gumprecht, L, Harimoorthy, R, Mossou, E, Sawaya, MR, Brewster, AS, Hattne, J, Sauter, NK, Seibert, M, Seuring, C, Stellato, F, Tilp, T, Eisenberg, DS, Messerschmidt, M, Williams, GJ, Koglin, JE, Makowski, L, Millane, RP, Forsyth, T, Boutet, S, White, TA, Barty, A, Chapman, H, Chen, SL, Liang, M, Neutze, R & Robinson, RC 2017, 'Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser', Cytoskeleton, vol. 74, no. 12, pp. 472-481. https://doi.org/10.1002/cm.21378
Popp D, Loh ND, Zorgati H, Ghoshdastider U, Liow LT, Ivanova MI et al. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser. Cytoskeleton. 2017 Dec 1;74(12):472-481. https://doi.org/10.1002/cm.21378
Popp, David ; Loh, N. Duane ; Zorgati, Habiba ; Ghoshdastider, Umesh ; Liow, Lu Ting ; Ivanova, Magdalena I. ; Larsson, Mårten ; DePonte, Daniel P. ; Bean, Richard ; Beyerlein, Kenneth R. ; Gati, Cornelius ; Oberthuer, Dominik ; Arnlund, David ; Brändén, Gisela ; Berntsen, Peter ; Cascio, Duilio ; Chavas, Leonard M.G. ; Chen, Joe P.J. ; Ding, Ke ; Fleckenstein, Holger ; Gumprecht, Lars ; Harimoorthy, Rajiv ; Mossou, Estelle ; Sawaya, Michael R. ; Brewster, Aaron S. ; Hattne, Johan ; Sauter, Nicholas K. ; Seibert, Marvin ; Seuring, Carolin ; Stellato, Francesco ; Tilp, Thomas ; Eisenberg, David S. ; Messerschmidt, Marc ; Williams, Garth J. ; Koglin, Jason E. ; Makowski, Lee ; Millane, Rick P. ; Forsyth, Trevor ; Boutet, Sébastien ; White, Thomas A. ; Barty, Anton ; Chapman, Henry ; Chen, Swaine L. ; Liang, Mengning ; Neutze, Richard ; Robinson, Robert C. / Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser. In: Cytoskeleton. 2017 ; Vol. 74, No. 12. pp. 472-481.
@article{1d4c2b293ddd4d80b4155ee1d783ce81,
title = "Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser",
abstract = "A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.",
keywords = "fiber diffraction, filament systems, XFEL",
author = "David Popp and Loh, {N. Duane} and Habiba Zorgati and Umesh Ghoshdastider and Liow, {Lu Ting} and Ivanova, {Magdalena I.} and M{\aa}rten Larsson and DePonte, {Daniel P.} and Richard Bean and Beyerlein, {Kenneth R.} and Cornelius Gati and Dominik Oberthuer and David Arnlund and Gisela Br{\"a}nd{\'e}n and Peter Berntsen and Duilio Cascio and Chavas, {Leonard M.G.} and Chen, {Joe P.J.} and Ke Ding and Holger Fleckenstein and Lars Gumprecht and Rajiv Harimoorthy and Estelle Mossou and Sawaya, {Michael R.} and Brewster, {Aaron S.} and Johan Hattne and Sauter, {Nicholas K.} and Marvin Seibert and Carolin Seuring and Francesco Stellato and Thomas Tilp and Eisenberg, {David S.} and Marc Messerschmidt and Williams, {Garth J.} and Koglin, {Jason E.} and Lee Makowski and Millane, {Rick P.} and Trevor Forsyth and S{\'e}bastien Boutet and White, {Thomas A.} and Anton Barty and Henry Chapman and Chen, {Swaine L.} and Mengning Liang and Richard Neutze and Robinson, {Robert C.}",
year = "2017",
month = "12",
day = "1",
doi = "10.1002/cm.21378",
language = "English (US)",
volume = "74",
pages = "472--481",
journal = "Cytoskeleton",
issn = "1949-3584",
publisher = "Wiley-Liss Inc.",
number = "12",

}

TY - JOUR

T1 - Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser

AU - Popp, David

AU - Loh, N. Duane

AU - Zorgati, Habiba

AU - Ghoshdastider, Umesh

AU - Liow, Lu Ting

AU - Ivanova, Magdalena I.

AU - Larsson, Mårten

AU - DePonte, Daniel P.

AU - Bean, Richard

AU - Beyerlein, Kenneth R.

AU - Gati, Cornelius

AU - Oberthuer, Dominik

AU - Arnlund, David

AU - Brändén, Gisela

AU - Berntsen, Peter

AU - Cascio, Duilio

AU - Chavas, Leonard M.G.

AU - Chen, Joe P.J.

AU - Ding, Ke

AU - Fleckenstein, Holger

AU - Gumprecht, Lars

AU - Harimoorthy, Rajiv

AU - Mossou, Estelle

AU - Sawaya, Michael R.

AU - Brewster, Aaron S.

AU - Hattne, Johan

AU - Sauter, Nicholas K.

AU - Seibert, Marvin

AU - Seuring, Carolin

AU - Stellato, Francesco

AU - Tilp, Thomas

AU - Eisenberg, David S.

AU - Messerschmidt, Marc

AU - Williams, Garth J.

AU - Koglin, Jason E.

AU - Makowski, Lee

AU - Millane, Rick P.

AU - Forsyth, Trevor

AU - Boutet, Sébastien

AU - White, Thomas A.

AU - Barty, Anton

AU - Chapman, Henry

AU - Chen, Swaine L.

AU - Liang, Mengning

AU - Neutze, Richard

AU - Robinson, Robert C.

PY - 2017/12/1

Y1 - 2017/12/1

N2 - A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.

AB - A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.

KW - fiber diffraction

KW - filament systems

KW - XFEL

UR - http://www.scopus.com/inward/record.url?scp=85020981195&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85020981195&partnerID=8YFLogxK

U2 - 10.1002/cm.21378

DO - 10.1002/cm.21378

M3 - Article

C2 - 28574190

AN - SCOPUS:85020981195

VL - 74

SP - 472

EP - 481

JO - Cytoskeleton

JF - Cytoskeleton

SN - 1949-3584

IS - 12

ER -