Fitness components and natural selection

Why are there different patterns on the emergence of drug resistance in Plasmodium falciparum and Plasmodium vivax?

Kristan A. Schneider, Ananias A. Escalante

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Background: Considering the distinct biological characteristics of Plasmodium species is crucial for control and elimination efforts, in particular when facing the spread of drug resistance. Whereas the evolutionary fitness of all malarial species could be approximated by the probability of being taken by a mosquito and then infecting a new host, the actual steps in the malaria life cycle leading to a successful transmission event show differences among Plasmodium species. These "steps" are called fitness components. Differences in terms of fitness components may affect how selection imposed by interventions, e.g. drug treatments, differentially acts on each Plasmodium species. Thus, a successful malaria control or elimination programme should understand how differences in fitness components among different malaria species could affect adaptive evolution (e.g. the emergence of drug resistance). In this investigation, the interactions between some fitness components and natural selection are explored. Methods. A population-genetic model is formulated that qualitatively explains how different fitness components (in particular gametocytogenesis and longevity of gametocytes) affect selection acting on merozoites during the erythrocytic cycle. By comparing Plasmodium falciparum and Plasmodium vivax, the interplay of parasitaemia and gametocytaemia dynamics in determining fitness is modelled under circumstances that allow contrasting solely the differences between these two parasites in terms of their fitness components. Results: By simulating fitness components, it is shown that selection acting on merozoites (e.g., on drug resistant mutations or malaria antigens) is more efficient in P. falciparum than in P. vivax. These results could explain, at least in part, why resistance against drugs, such as chloroquine (CQ) is highly prevalent in P. falciparum worldwide, while CQ is still a successful treatment for P. vivax despite its massive use. Furthermore, these analyses are used to explore the importance of understanding the dynamic of gametocytaemia to ascertain the spreading of drug resistance. Conclusions: The strength of natural selection on mutations that express their advantage at the merozoite stage is different in P. vivax and P. falciparum. Species-specific differences in gametocytogenesis and longevity of gametocytes need to be accounted for when designing effective malaria control and elimination programmes. There is a need for reliable data on gametocytogenesis from field studies.

Original languageEnglish (US)
Article number15
JournalMalaria Journal
Volume12
Issue number1
DOIs
StatePublished - 2013

Fingerprint

Plasmodium vivax
Genetic Selection
Plasmodium falciparum
Drug Resistance
Malaria
Merozoites
Plasmodium
Chloroquine
Mutation
Parasitemia
Genetic Models
Population Genetics
Life Cycle Stages
Culicidae
Pharmaceutical Preparations
Parasites
Antigens

Keywords

  • Artemisinin based combination therapy
  • Fitness components
  • Gametocytogenesis
  • Malaria elimination
  • Natural Selection
  • Primaquine

ASJC Scopus subject areas

  • Infectious Diseases
  • Parasitology

Cite this

Fitness components and natural selection : Why are there different patterns on the emergence of drug resistance in Plasmodium falciparum and Plasmodium vivax? / Schneider, Kristan A.; Escalante, Ananias A.

In: Malaria Journal, Vol. 12, No. 1, 15, 2013.

Research output: Contribution to journalArticle

@article{01389677aaca4913a98f3d570b534f49,
title = "Fitness components and natural selection: Why are there different patterns on the emergence of drug resistance in Plasmodium falciparum and Plasmodium vivax?",
abstract = "Background: Considering the distinct biological characteristics of Plasmodium species is crucial for control and elimination efforts, in particular when facing the spread of drug resistance. Whereas the evolutionary fitness of all malarial species could be approximated by the probability of being taken by a mosquito and then infecting a new host, the actual steps in the malaria life cycle leading to a successful transmission event show differences among Plasmodium species. These {"}steps{"} are called fitness components. Differences in terms of fitness components may affect how selection imposed by interventions, e.g. drug treatments, differentially acts on each Plasmodium species. Thus, a successful malaria control or elimination programme should understand how differences in fitness components among different malaria species could affect adaptive evolution (e.g. the emergence of drug resistance). In this investigation, the interactions between some fitness components and natural selection are explored. Methods. A population-genetic model is formulated that qualitatively explains how different fitness components (in particular gametocytogenesis and longevity of gametocytes) affect selection acting on merozoites during the erythrocytic cycle. By comparing Plasmodium falciparum and Plasmodium vivax, the interplay of parasitaemia and gametocytaemia dynamics in determining fitness is modelled under circumstances that allow contrasting solely the differences between these two parasites in terms of their fitness components. Results: By simulating fitness components, it is shown that selection acting on merozoites (e.g., on drug resistant mutations or malaria antigens) is more efficient in P. falciparum than in P. vivax. These results could explain, at least in part, why resistance against drugs, such as chloroquine (CQ) is highly prevalent in P. falciparum worldwide, while CQ is still a successful treatment for P. vivax despite its massive use. Furthermore, these analyses are used to explore the importance of understanding the dynamic of gametocytaemia to ascertain the spreading of drug resistance. Conclusions: The strength of natural selection on mutations that express their advantage at the merozoite stage is different in P. vivax and P. falciparum. Species-specific differences in gametocytogenesis and longevity of gametocytes need to be accounted for when designing effective malaria control and elimination programmes. There is a need for reliable data on gametocytogenesis from field studies.",
keywords = "Artemisinin based combination therapy, Fitness components, Gametocytogenesis, Malaria elimination, Natural Selection, Primaquine",
author = "Schneider, {Kristan A.} and Escalante, {Ananias A.}",
year = "2013",
doi = "10.1186/1475-2875-12-15",
language = "English (US)",
volume = "12",
journal = "Malaria Journal",
issn = "1475-2875",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Fitness components and natural selection

T2 - Why are there different patterns on the emergence of drug resistance in Plasmodium falciparum and Plasmodium vivax?

AU - Schneider, Kristan A.

AU - Escalante, Ananias A.

PY - 2013

Y1 - 2013

N2 - Background: Considering the distinct biological characteristics of Plasmodium species is crucial for control and elimination efforts, in particular when facing the spread of drug resistance. Whereas the evolutionary fitness of all malarial species could be approximated by the probability of being taken by a mosquito and then infecting a new host, the actual steps in the malaria life cycle leading to a successful transmission event show differences among Plasmodium species. These "steps" are called fitness components. Differences in terms of fitness components may affect how selection imposed by interventions, e.g. drug treatments, differentially acts on each Plasmodium species. Thus, a successful malaria control or elimination programme should understand how differences in fitness components among different malaria species could affect adaptive evolution (e.g. the emergence of drug resistance). In this investigation, the interactions between some fitness components and natural selection are explored. Methods. A population-genetic model is formulated that qualitatively explains how different fitness components (in particular gametocytogenesis and longevity of gametocytes) affect selection acting on merozoites during the erythrocytic cycle. By comparing Plasmodium falciparum and Plasmodium vivax, the interplay of parasitaemia and gametocytaemia dynamics in determining fitness is modelled under circumstances that allow contrasting solely the differences between these two parasites in terms of their fitness components. Results: By simulating fitness components, it is shown that selection acting on merozoites (e.g., on drug resistant mutations or malaria antigens) is more efficient in P. falciparum than in P. vivax. These results could explain, at least in part, why resistance against drugs, such as chloroquine (CQ) is highly prevalent in P. falciparum worldwide, while CQ is still a successful treatment for P. vivax despite its massive use. Furthermore, these analyses are used to explore the importance of understanding the dynamic of gametocytaemia to ascertain the spreading of drug resistance. Conclusions: The strength of natural selection on mutations that express their advantage at the merozoite stage is different in P. vivax and P. falciparum. Species-specific differences in gametocytogenesis and longevity of gametocytes need to be accounted for when designing effective malaria control and elimination programmes. There is a need for reliable data on gametocytogenesis from field studies.

AB - Background: Considering the distinct biological characteristics of Plasmodium species is crucial for control and elimination efforts, in particular when facing the spread of drug resistance. Whereas the evolutionary fitness of all malarial species could be approximated by the probability of being taken by a mosquito and then infecting a new host, the actual steps in the malaria life cycle leading to a successful transmission event show differences among Plasmodium species. These "steps" are called fitness components. Differences in terms of fitness components may affect how selection imposed by interventions, e.g. drug treatments, differentially acts on each Plasmodium species. Thus, a successful malaria control or elimination programme should understand how differences in fitness components among different malaria species could affect adaptive evolution (e.g. the emergence of drug resistance). In this investigation, the interactions between some fitness components and natural selection are explored. Methods. A population-genetic model is formulated that qualitatively explains how different fitness components (in particular gametocytogenesis and longevity of gametocytes) affect selection acting on merozoites during the erythrocytic cycle. By comparing Plasmodium falciparum and Plasmodium vivax, the interplay of parasitaemia and gametocytaemia dynamics in determining fitness is modelled under circumstances that allow contrasting solely the differences between these two parasites in terms of their fitness components. Results: By simulating fitness components, it is shown that selection acting on merozoites (e.g., on drug resistant mutations or malaria antigens) is more efficient in P. falciparum than in P. vivax. These results could explain, at least in part, why resistance against drugs, such as chloroquine (CQ) is highly prevalent in P. falciparum worldwide, while CQ is still a successful treatment for P. vivax despite its massive use. Furthermore, these analyses are used to explore the importance of understanding the dynamic of gametocytaemia to ascertain the spreading of drug resistance. Conclusions: The strength of natural selection on mutations that express their advantage at the merozoite stage is different in P. vivax and P. falciparum. Species-specific differences in gametocytogenesis and longevity of gametocytes need to be accounted for when designing effective malaria control and elimination programmes. There is a need for reliable data on gametocytogenesis from field studies.

KW - Artemisinin based combination therapy

KW - Fitness components

KW - Gametocytogenesis

KW - Malaria elimination

KW - Natural Selection

KW - Primaquine

UR - http://www.scopus.com/inward/record.url?scp=84872137737&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84872137737&partnerID=8YFLogxK

U2 - 10.1186/1475-2875-12-15

DO - 10.1186/1475-2875-12-15

M3 - Article

VL - 12

JO - Malaria Journal

JF - Malaria Journal

SN - 1475-2875

IS - 1

M1 - 15

ER -