First-principles study of defect migration in RE-doped ceria (RE = Pr, Gd)

Pratik Dholabhai, James Adams, Peter Crozier, Renu Sharma

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Oxygen vacancy formation and migration in ceria is central to its performance as an ionic conductor. Ceria doped with suitable aliovalent dopants has enhanced oxygen ion conductivity - higher than that of yttria stabilized zirconia (YSZ), the most widely used electrolyte material in solid oxide fuel cells (SOFC). To gain insight into atomic defect migration in this class of promising electrolyte materials, we have performed total energy calculations within the framework of density functional theory (DFT+U) to study oxygen vacancy migration in ceria, Pr-doped ceria (PDC) and Gd-doped ceria (GDC). We report activation energies for various oxygen vacancy migration pathways in PDC and GDC. Results pertaining to the preferred oxygen vacancy formation sites and migration pathways in these materials will be discussed in detail. Overall, the presence of Pr and Gd ions significantly affects oxygen vacancy formation and migration, in a complex manner requiring the investigation of many different migration events. We propose a relationship that explains the role of additional dopants in lowering the activation energy for vacancy migration in PDC and GDC.

Original languageEnglish (US)
Title of host publicationMaterials Research Society Symposium Proceedings
Number of pages6
Publication statusPublished - 2011
Event2010 MRS Fall Meeting - Boston, MA, United States
Duration: Nov 29 2010Dec 3 2010


Other2010 MRS Fall Meeting
CountryUnited States
CityBoston, MA


ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanical Engineering
  • Mechanics of Materials

Cite this

Dholabhai, P., Adams, J., Crozier, P., & Sharma, R. (2011). First-principles study of defect migration in RE-doped ceria (RE = Pr, Gd). In Materials Research Society Symposium Proceedings (Vol. 1311, pp. 25-30)