Femtosecond electronic response of atoms to ultra-intense X-rays

L. Young, E. P. Kanter, B. Kräsignssig, Y. Li, A. M. March, S. T. Pratt, R. Santra, S. H. Southworth, N. Rohringer, L. F. Dimauro, G. Doumy, C. A. Roedig, N. Berrah, L. Fang, M. Hoener, P. H. Bucksbaum, J. P. Cryan, S. Ghimire, J. M. Glownia, D. A. ReisJ. D. Bozek, C. Bostedt, Marc Messerschmidt

Research output: Contribution to journalArticle

514 Citations (Scopus)

Abstract

An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10 18 W cm-2, 1.5-0.6 nm, ∼105 X-ray photons per Å2). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse-by sequentially ejecting electrons-to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces-atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.

Original languageEnglish (US)
Pages (from-to)56-61
Number of pages6
JournalNature
Volume466
Issue number7302
DOIs
StatePublished - Jul 1 2010
Externally publishedYes

Fingerprint

X-Rays
Electrons
Neon
Photons
Light
Lasers
Radiation

ASJC Scopus subject areas

  • Medicine(all)
  • General

Cite this

Young, L., Kanter, E. P., Kräsignssig, B., Li, Y., March, A. M., Pratt, S. T., ... Messerschmidt, M. (2010). Femtosecond electronic response of atoms to ultra-intense X-rays. Nature, 466(7302), 56-61. https://doi.org/10.1038/nature09177

Femtosecond electronic response of atoms to ultra-intense X-rays. / Young, L.; Kanter, E. P.; Kräsignssig, B.; Li, Y.; March, A. M.; Pratt, S. T.; Santra, R.; Southworth, S. H.; Rohringer, N.; Dimauro, L. F.; Doumy, G.; Roedig, C. A.; Berrah, N.; Fang, L.; Hoener, M.; Bucksbaum, P. H.; Cryan, J. P.; Ghimire, S.; Glownia, J. M.; Reis, D. A.; Bozek, J. D.; Bostedt, C.; Messerschmidt, Marc.

In: Nature, Vol. 466, No. 7302, 01.07.2010, p. 56-61.

Research output: Contribution to journalArticle

Young, L, Kanter, EP, Kräsignssig, B, Li, Y, March, AM, Pratt, ST, Santra, R, Southworth, SH, Rohringer, N, Dimauro, LF, Doumy, G, Roedig, CA, Berrah, N, Fang, L, Hoener, M, Bucksbaum, PH, Cryan, JP, Ghimire, S, Glownia, JM, Reis, DA, Bozek, JD, Bostedt, C & Messerschmidt, M 2010, 'Femtosecond electronic response of atoms to ultra-intense X-rays', Nature, vol. 466, no. 7302, pp. 56-61. https://doi.org/10.1038/nature09177
Young L, Kanter EP, Kräsignssig B, Li Y, March AM, Pratt ST et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature. 2010 Jul 1;466(7302):56-61. https://doi.org/10.1038/nature09177
Young, L. ; Kanter, E. P. ; Kräsignssig, B. ; Li, Y. ; March, A. M. ; Pratt, S. T. ; Santra, R. ; Southworth, S. H. ; Rohringer, N. ; Dimauro, L. F. ; Doumy, G. ; Roedig, C. A. ; Berrah, N. ; Fang, L. ; Hoener, M. ; Bucksbaum, P. H. ; Cryan, J. P. ; Ghimire, S. ; Glownia, J. M. ; Reis, D. A. ; Bozek, J. D. ; Bostedt, C. ; Messerschmidt, Marc. / Femtosecond electronic response of atoms to ultra-intense X-rays. In: Nature. 2010 ; Vol. 466, No. 7302. pp. 56-61.
@article{0707e9c3041b4373870950cab9d9823a,
title = "Femtosecond electronic response of atoms to ultra-intense X-rays",
abstract = "An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10 18 W cm-2, 1.5-0.6 nm, ∼105 X-ray photons per {\AA}2). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse-by sequentially ejecting electrons-to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces-atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.",
author = "L. Young and Kanter, {E. P.} and B. Kr{\"a}signssig and Y. Li and March, {A. M.} and Pratt, {S. T.} and R. Santra and Southworth, {S. H.} and N. Rohringer and Dimauro, {L. F.} and G. Doumy and Roedig, {C. A.} and N. Berrah and L. Fang and M. Hoener and Bucksbaum, {P. H.} and Cryan, {J. P.} and S. Ghimire and Glownia, {J. M.} and Reis, {D. A.} and Bozek, {J. D.} and C. Bostedt and Marc Messerschmidt",
year = "2010",
month = "7",
day = "1",
doi = "10.1038/nature09177",
language = "English (US)",
volume = "466",
pages = "56--61",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7302",

}

TY - JOUR

T1 - Femtosecond electronic response of atoms to ultra-intense X-rays

AU - Young, L.

AU - Kanter, E. P.

AU - Kräsignssig, B.

AU - Li, Y.

AU - March, A. M.

AU - Pratt, S. T.

AU - Santra, R.

AU - Southworth, S. H.

AU - Rohringer, N.

AU - Dimauro, L. F.

AU - Doumy, G.

AU - Roedig, C. A.

AU - Berrah, N.

AU - Fang, L.

AU - Hoener, M.

AU - Bucksbaum, P. H.

AU - Cryan, J. P.

AU - Ghimire, S.

AU - Glownia, J. M.

AU - Reis, D. A.

AU - Bozek, J. D.

AU - Bostedt, C.

AU - Messerschmidt, Marc

PY - 2010/7/1

Y1 - 2010/7/1

N2 - An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10 18 W cm-2, 1.5-0.6 nm, ∼105 X-ray photons per Å2). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse-by sequentially ejecting electrons-to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces-atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.

AB - An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10 18 W cm-2, 1.5-0.6 nm, ∼105 X-ray photons per Å2). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse-by sequentially ejecting electrons-to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces-atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.

UR - http://www.scopus.com/inward/record.url?scp=77954232615&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77954232615&partnerID=8YFLogxK

U2 - 10.1038/nature09177

DO - 10.1038/nature09177

M3 - Article

C2 - 20596013

AN - SCOPUS:77954232615

VL - 466

SP - 56

EP - 61

JO - Nature

JF - Nature

SN - 0028-0836

IS - 7302

ER -