Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles

Tais Gorkhover, Sebastian Schorb, Ryan Coffee, Marcus Adolph, Lutz Foucar, Daniela Rupp, Andrew Aquila, John D. Bozek, Sascha W. Epp, Benjamin Erk, Lars Gumprecht, Lotte Holmegaard, Andreas Hartmann, Robert Hartmann, Günter Hauser, Peter Holl, Andre Hömke, Per Johnsson, Nils Kimmel, Kai Uwe KühnelMarc Messerschmidt, Christian Reich, Arnaud Rouzée, Benedikt Rudek, Carlo Schmidt, Joachim Schulz, Heike Soltau, Stephan Stern, Georg Weidenspointner, Bill White, Jochen Küpper, Lothar Strüder, Ilme Schlichting, Joachim Ullrich, Daniel Rolles, Artem Rudenko, Thomas Möller, Christoph Bostedt

Research output: Contribution to journalArticlepeer-review

87 Scopus citations

Abstract

The ability to observe ultrafast structural changes in nanoscopic samples is essential for understanding non-equilibrium phenomena such as chemical reactions, matter under extreme conditions, ultrafast phase transitions and intense light-matter interactions. Established imaging techniques are limited either in time or spatial resolution and typically require samples to be deposited on a substrate, which interferes with the dynamics. Here, we show that coherent X-ray diffraction images from isolated single samples can be used to visualize femtosecond electron density dynamics. We recorded X-ray snapshot images from a nanoplasma expansion, a prototypical non-equilibrium phenomenon. Single Xe clusters are superheated using an intense optical laser pulse and the structural evolution of the sample is imaged with a single X-ray pulse. We resolved ultrafast surface softening on the nanometre scale at the plasma/vacuum interface within 100 fs of the heating pulse. Our study is the first time-resolved visualization of irreversible femtosecond processes in free, individual nanometre-sized samples.

Original languageEnglish (US)
Pages (from-to)93-97
Number of pages5
JournalNature Photonics
Volume10
Issue number2
DOIs
StatePublished - Feb 1 2016
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles'. Together they form a unique fingerprint.

Cite this