Fast Convergence Rates for Distributed Non-Bayesian Learning

Angelia Nedich, Alex Olshevsky, Cesar A. Uribe

Research output: Contribution to journalArticle

40 Scopus citations

Abstract

We consider the problem of distributed learning, where a network of agents collectively aim to agree on a hypothesis that best explains a set of distributed observations of conditionally independent random processes. We propose a distributed algorithm and establish consistency, as well as a nonasymptotic, explicit, and geometric convergence rate for the concentration of the beliefs around the set of optimal hypotheses. Additionally, if the agents interact over static networks, we provide an improved learning protocol with better scalability with respect to the number of nodes in the network.

Original languageEnglish (US)
Article number7891016
Pages (from-to)5538-5553
Number of pages16
JournalIEEE Transactions on Automatic Control
Volume62
Issue number11
DOIs
StatePublished - Nov 1 2017

Keywords

  • Algorithm design and analysis
  • Bayes methods
  • distributed algorithms
  • estimation
  • learning

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Computer Science Applications
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Fast Convergence Rates for Distributed Non-Bayesian Learning'. Together they form a unique fingerprint.

  • Cite this