Abstract

We present a method to fabricate well-controlled periodic silicon nanopillars (Si NPs) in hexagonal arrays using silica nanosphere (SNS) lithography (SNL) combined with metal-assisted chemical etching (MaCE). The period of the Si NPs is easily changed by using our silica nanosphere (SNS) spin-coating process, which provides excellent monolayer uniformity and coverage (>95%) over large surface areas. The size of the deposited SNS is adjusted by reactive ion etching (RIE) to produce a target diameter at a fixed period for control of the surface pattern size after a gold metal mask layer deposition. The Si NPs are etched with the MaCE technique following introduction of a Ni interfacial layer between the Si and Au catalyst layer for adhesion and improved lithographical accuracy. The result is a fast, convenient, and large-area applicable Si surface nanolithography technique for accurate and reproducible Si NP fabrication.

Original languageEnglish (US)
Pages (from-to)4018-4023
Number of pages6
JournalLangmuir
Volume31
Issue number13
DOIs
StatePublished - Mar 17 2015

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Fabrication of periodic silicon nanopillars in a two-dimensional hexagonal array with enhanced control on structural dimension and period'. Together they form a unique fingerprint.

Cite this