Exploring intra-crystalline B-isotope variations in mixed-layer illite-smectite

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

The isotopic composition of boron in illite-smectite (I-S) can be important for monitoring fluid/rock interactions in sedimentary basins. Boron substitutes for Si during reaction of smectite to illite and can preserve information about paleofluid B-isotopic composition. Boron is enriched in oilfield brines, therefore the isotopic composition of those brines may be recorded during illitization and represent a monitor of hydrocarbon maturity and migration. We re-examined previously published experimental results on B-isotope fractionation between I-S and water. By separating B from two crystallographic sites of I-S (tetrahedral and interlayer), we found differences in the δ11B that might be used as a single-mineral geothermometer. Boron incorporation in I-S follows a non-linear kinetic pathway. Maximum interlayer-B incorporation occurs during R1-ordering. R3-ordering approaches equilibrium with expulsion of interlayer-B leaving only tetrahedral layer-B. The important discovery is that tetrahedral layer δ1B does not change between R1 and R3 ordering. Boron substitutes in an equilibrium ratio early in the crystallographic reordering of I-S. Natural I-S samples were tested from Gulf Coast mudstones, increasingly illitized with burial depth. Diagenetic reaction kinetics differ from hydrothermal experiments, but still reveal large δ11B differences (up to 40‰) between the interlayer and tetrahedral layer. Interlayer δ11B decreases with increasing temperature and illitization. We propose that interlayer δ11B values represent metastable equilibrium, whereas tetrahedral layer B represents a temperature-dependent equilibrium. If this is true, then the B-isotope geochemistry of I-S can be used to determine paleotemperatures and monitor the influence of hydrocarbons on pore fluids associated with diagenetic I-S.

Original languageEnglish (US)
Pages (from-to)1564-1570
Number of pages7
JournalAmerican Mineralogist
Volume87
Issue number11-12
StatePublished - Nov 2002

Fingerprint

illite
montmorillonite
Isotopes
smectite
mixed layer
Boron
isotopes
interlayers
isotope
boron
Crystalline materials
illitization
brines
Brines
isotopic composition
Hydrocarbons
hydrocarbons
Chemical analysis
substitutes
hydrocarbon

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics

Cite this

Exploring intra-crystalline B-isotope variations in mixed-layer illite-smectite. / Williams, Lynda; Hervig, Richard.

In: American Mineralogist, Vol. 87, No. 11-12, 11.2002, p. 1564-1570.

Research output: Contribution to journalArticle

@article{8ac07470e78b4170b1a1acc76d4ef102,
title = "Exploring intra-crystalline B-isotope variations in mixed-layer illite-smectite",
abstract = "The isotopic composition of boron in illite-smectite (I-S) can be important for monitoring fluid/rock interactions in sedimentary basins. Boron substitutes for Si during reaction of smectite to illite and can preserve information about paleofluid B-isotopic composition. Boron is enriched in oilfield brines, therefore the isotopic composition of those brines may be recorded during illitization and represent a monitor of hydrocarbon maturity and migration. We re-examined previously published experimental results on B-isotope fractionation between I-S and water. By separating B from two crystallographic sites of I-S (tetrahedral and interlayer), we found differences in the δ11B that might be used as a single-mineral geothermometer. Boron incorporation in I-S follows a non-linear kinetic pathway. Maximum interlayer-B incorporation occurs during R1-ordering. R3-ordering approaches equilibrium with expulsion of interlayer-B leaving only tetrahedral layer-B. The important discovery is that tetrahedral layer δ1B does not change between R1 and R3 ordering. Boron substitutes in an equilibrium ratio early in the crystallographic reordering of I-S. Natural I-S samples were tested from Gulf Coast mudstones, increasingly illitized with burial depth. Diagenetic reaction kinetics differ from hydrothermal experiments, but still reveal large δ11B differences (up to 40‰) between the interlayer and tetrahedral layer. Interlayer δ11B decreases with increasing temperature and illitization. We propose that interlayer δ11B values represent metastable equilibrium, whereas tetrahedral layer B represents a temperature-dependent equilibrium. If this is true, then the B-isotope geochemistry of I-S can be used to determine paleotemperatures and monitor the influence of hydrocarbons on pore fluids associated with diagenetic I-S.",
author = "Lynda Williams and Richard Hervig",
year = "2002",
month = "11",
language = "English (US)",
volume = "87",
pages = "1564--1570",
journal = "American Mineralogist",
issn = "0003-004X",
publisher = "Mineralogical Society of America",
number = "11-12",

}

TY - JOUR

T1 - Exploring intra-crystalline B-isotope variations in mixed-layer illite-smectite

AU - Williams, Lynda

AU - Hervig, Richard

PY - 2002/11

Y1 - 2002/11

N2 - The isotopic composition of boron in illite-smectite (I-S) can be important for monitoring fluid/rock interactions in sedimentary basins. Boron substitutes for Si during reaction of smectite to illite and can preserve information about paleofluid B-isotopic composition. Boron is enriched in oilfield brines, therefore the isotopic composition of those brines may be recorded during illitization and represent a monitor of hydrocarbon maturity and migration. We re-examined previously published experimental results on B-isotope fractionation between I-S and water. By separating B from two crystallographic sites of I-S (tetrahedral and interlayer), we found differences in the δ11B that might be used as a single-mineral geothermometer. Boron incorporation in I-S follows a non-linear kinetic pathway. Maximum interlayer-B incorporation occurs during R1-ordering. R3-ordering approaches equilibrium with expulsion of interlayer-B leaving only tetrahedral layer-B. The important discovery is that tetrahedral layer δ1B does not change between R1 and R3 ordering. Boron substitutes in an equilibrium ratio early in the crystallographic reordering of I-S. Natural I-S samples were tested from Gulf Coast mudstones, increasingly illitized with burial depth. Diagenetic reaction kinetics differ from hydrothermal experiments, but still reveal large δ11B differences (up to 40‰) between the interlayer and tetrahedral layer. Interlayer δ11B decreases with increasing temperature and illitization. We propose that interlayer δ11B values represent metastable equilibrium, whereas tetrahedral layer B represents a temperature-dependent equilibrium. If this is true, then the B-isotope geochemistry of I-S can be used to determine paleotemperatures and monitor the influence of hydrocarbons on pore fluids associated with diagenetic I-S.

AB - The isotopic composition of boron in illite-smectite (I-S) can be important for monitoring fluid/rock interactions in sedimentary basins. Boron substitutes for Si during reaction of smectite to illite and can preserve information about paleofluid B-isotopic composition. Boron is enriched in oilfield brines, therefore the isotopic composition of those brines may be recorded during illitization and represent a monitor of hydrocarbon maturity and migration. We re-examined previously published experimental results on B-isotope fractionation between I-S and water. By separating B from two crystallographic sites of I-S (tetrahedral and interlayer), we found differences in the δ11B that might be used as a single-mineral geothermometer. Boron incorporation in I-S follows a non-linear kinetic pathway. Maximum interlayer-B incorporation occurs during R1-ordering. R3-ordering approaches equilibrium with expulsion of interlayer-B leaving only tetrahedral layer-B. The important discovery is that tetrahedral layer δ1B does not change between R1 and R3 ordering. Boron substitutes in an equilibrium ratio early in the crystallographic reordering of I-S. Natural I-S samples were tested from Gulf Coast mudstones, increasingly illitized with burial depth. Diagenetic reaction kinetics differ from hydrothermal experiments, but still reveal large δ11B differences (up to 40‰) between the interlayer and tetrahedral layer. Interlayer δ11B decreases with increasing temperature and illitization. We propose that interlayer δ11B values represent metastable equilibrium, whereas tetrahedral layer B represents a temperature-dependent equilibrium. If this is true, then the B-isotope geochemistry of I-S can be used to determine paleotemperatures and monitor the influence of hydrocarbons on pore fluids associated with diagenetic I-S.

UR - http://www.scopus.com/inward/record.url?scp=0036874186&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036874186&partnerID=8YFLogxK

M3 - Article

VL - 87

SP - 1564

EP - 1570

JO - American Mineralogist

JF - American Mineralogist

SN - 0003-004X

IS - 11-12

ER -