TY - GEN
T1 - Exploring Boolean and non-Boolean computing with spin torque devices
AU - Roy, Kaushik
AU - Sharad, Mrigank
AU - Fan, Deliang
AU - Yogendra, Karthik
PY - 2013
Y1 - 2013
N2 - In this paper we discuss the potential of emerging spin-torque devices for computing applications. Recent proposals for spin-based computing schemes may be differentiated as 'all-spin' vs. hybrid, programmable vs. fixed, and, Boolean vs. non-Boolean. Allspin logic-styles may offer high area-density due to small form-factor of nano-magnetic devices. However, circuit and system-level design techniques need to be explored that leaverage the specific spin-device characterisitcs to achieve energy-efficiency, performance and reliability comparable to those of CMOS. The non-volatility of nano-magnets can be exploited in the design of energy and area-efficient programmable logic. In such logic-styles, spin-devices may play the dual-role of computing as well as memory-elements that provide field-programmability. Spin-based threshold logic design is presented as an example. Emerging spintronic phenomena may lead to ultra-low-voltage, current-mode, spin-torque switches that can offer attractive computing capabilities, beyond digital switches. Such devices may be suitable for non-Boolean data-processing applications which involve analog processing. Integration of such spin-torque devices with charge-based devices like CMOS and resistive memory can lead to highly energy-efficient information processing hardware for applicatons like pattern-matching, neuromorphic-computing, image-processing and data-conversion. Towards the end, we discuss the possibility of applying emerging spin-torque switches in the design of energy-efficient global interconnects, for future chip multiprocessors.
AB - In this paper we discuss the potential of emerging spin-torque devices for computing applications. Recent proposals for spin-based computing schemes may be differentiated as 'all-spin' vs. hybrid, programmable vs. fixed, and, Boolean vs. non-Boolean. Allspin logic-styles may offer high area-density due to small form-factor of nano-magnetic devices. However, circuit and system-level design techniques need to be explored that leaverage the specific spin-device characterisitcs to achieve energy-efficiency, performance and reliability comparable to those of CMOS. The non-volatility of nano-magnets can be exploited in the design of energy and area-efficient programmable logic. In such logic-styles, spin-devices may play the dual-role of computing as well as memory-elements that provide field-programmability. Spin-based threshold logic design is presented as an example. Emerging spintronic phenomena may lead to ultra-low-voltage, current-mode, spin-torque switches that can offer attractive computing capabilities, beyond digital switches. Such devices may be suitable for non-Boolean data-processing applications which involve analog processing. Integration of such spin-torque devices with charge-based devices like CMOS and resistive memory can lead to highly energy-efficient information processing hardware for applicatons like pattern-matching, neuromorphic-computing, image-processing and data-conversion. Towards the end, we discuss the possibility of applying emerging spin-torque switches in the design of energy-efficient global interconnects, for future chip multiprocessors.
KW - analog
KW - interconnect
KW - logic
KW - low power
KW - neural networks
KW - non-Boolean
KW - programmable logic array
KW - spin
KW - threshold logic
UR - http://www.scopus.com/inward/record.url?scp=84893391026&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893391026&partnerID=8YFLogxK
U2 - 10.1109/ICCAD.2013.6691174
DO - 10.1109/ICCAD.2013.6691174
M3 - Conference contribution
AN - SCOPUS:84893391026
SN - 9781479910717
T3 - IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
SP - 576
EP - 580
BT - 2013 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2013 - Digest of Technical Papers
T2 - 2013 32nd IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2013
Y2 - 18 November 2013 through 21 November 2013
ER -