Explaining A Black-box By Using A Deep Variational Information Bottleneck Approach

Seojin Bang, Pengtao Xie, Heewook Lee, Wei Wu, Eric Xing

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Interpretable machine learning has gained much attention recently. Briefness and comprehensiveness are necessary in order to provide a large amount of information concisely when explaining a black-box decision system. However, existing interpretable machine learning methods fail to consider briefness and comprehensiveness simultaneously, leading to redundant explanations. We propose the variational information bottleneck for interpretation, VIBI, a system-agnostic interpretable method that provides a brief but comprehensive explanation. VIBI adopts an information theoretic principle, information bottleneck principle, as a criterion for finding such explanations. For each instance, VIBI selects key features that are maximally compressed about an input (briefness), and informative about a decision made by a black-box system on that input (comprehensive). We evaluate VIBI on three datasets and compare with state-of-the-art interpretable machine learning methods in terms of both interpretability and fidelity evaluated by human and quantitative metrics.

Original languageEnglish (US)
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Pages11396-11404
Number of pages9
ISBN (Electronic)9781713835974
StatePublished - 2021
Externally publishedYes
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: Feb 2 2021Feb 9 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021
Volume13A

Conference

Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online
Period2/2/212/9/21

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Explaining A Black-box By Using A Deep Variational Information Bottleneck Approach'. Together they form a unique fingerprint.

Cite this