Exciton-Driven Ultrafast Enhancement of Quasiparticle Bandgap and Effective Mass in Monolayer MoS2

Yi Lin, Yang Hao Chan, Woojoo Lee, Li Syuan Lu, Zhenglu Li, Wen Hao Chang, Chih Kang Shih, Robert A. Kaindl, Steven G. Louie, Alessandra Lanzara

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

We report an ultrafast increase of the quasi-particle bandgap and effective mass in photoexcited monolayer MoS2 on HOPG, utilizing extreme-ultraviolet time- and angle-resolved photoemission spectroscopy (XUV-trARPES). Combined with theoretical models, we attribute these compelling band renormalizations to the excitonic effects from bound electron-hole pairs.

Original languageEnglish (US)
Title of host publication2022 Conference on Lasers and Electro-Optics, CLEO 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781957171050
StatePublished - 2022
Externally publishedYes
Event2022 Conference on Lasers and Electro-Optics, CLEO 2022 - San Jose, United States
Duration: May 15 2022May 20 2022

Publication series

Name2022 Conference on Lasers and Electro-Optics, CLEO 2022 - Proceedings

Conference

Conference2022 Conference on Lasers and Electro-Optics, CLEO 2022
Country/TerritoryUnited States
CitySan Jose
Period5/15/225/20/22

ASJC Scopus subject areas

  • Instrumentation
  • Spectroscopy
  • Biomedical Engineering
  • Electrical and Electronic Engineering
  • Management, Monitoring, Policy and Law
  • Materials Science (miscellaneous)
  • Acoustics and Ultrasonics
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Exciton-Driven Ultrafast Enhancement of Quasiparticle Bandgap and Effective Mass in Monolayer MoS2'. Together they form a unique fingerprint.

Cite this