Examination of different accelerometer cut-points for assessing sedentary behaviors in children

Youngwon Kim, Jung Min Lee, Bradley P. Peters, Glenn Gaesser, Gregory J. Welk

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

Background: Public health research on sedentary behavior (SB) in youth has heavily relied on accelerometers. However, it has been limited by the lack of consensus on the most accurate accelerometer cut-points as well as by unknown effects caused by accelerometer position (wrist vs. hip) and output (single axis vs. multiple axes). The present study systematically evaluates classification accuracy of different Actigraph cut-points for classifying SB using hip and wrist-worn monitors and establishes new cut-points to enable use of the 3-dimensional vector magnitude data (for both hip and wrist placement). Methods: A total of 125 children ages 7-13 yrs performed 12 randomly selected activities (from a set of 24 different activities) for 5 min each while wearing tri-axial Actigraph accelerometers on both the hip and wrist. The accelerometer data were categorized as either sedentary or non-sedentary minutes using six previously studied cut-points: 100counts-per-minute (CPM), 200CPM, 300CPM, 500CPM, 800CPM and 1100CPM. Classification accuracy was evaluated with Cohen's Kappa (k) and new cut-points were identified from Receiver Operating Characteristic (ROC). Results: Of the six cut-points, the 100CPM value yielded the highest classification accuracy (κ = 0.81) for hip placement. For wrist placement, all of the cut-points produced low classification accuracy (ranges of k from 0.44 to 0.67). Optimal sedentary cut-points derived from ROC were 554.3CPM (ROC-AUC of 0.99) for vector magnitude for hip, 1756CPM (ROC-AUC of 0.94) for vertical axis for wrist, and 3958.3CPM (ROC-AUC of 0.93) for vector magnitude for wrist placement. Conclusions: The 100CPM was supported for use with vertical axis for hip placement, but not for wrist placement. The ROC-derived cut-points can be used to classify youth SB with the wrist and with vector magnitude data.

Original languageEnglish (US)
Article numbere90630
JournalPLoS One
Volume9
Issue number4
DOIs
StatePublished - Apr 3 2014

Fingerprint

Child Behavior
hips
Wrist
Accelerometers
Hip
ROC Curve
vector data
actigraphy
Area Under Curve
Public health
public health
Consensus
Public Health
monitoring
Research

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Examination of different accelerometer cut-points for assessing sedentary behaviors in children. / Kim, Youngwon; Lee, Jung Min; Peters, Bradley P.; Gaesser, Glenn; Welk, Gregory J.

In: PLoS One, Vol. 9, No. 4, e90630, 03.04.2014.

Research output: Contribution to journalArticle

Kim, Youngwon ; Lee, Jung Min ; Peters, Bradley P. ; Gaesser, Glenn ; Welk, Gregory J. / Examination of different accelerometer cut-points for assessing sedentary behaviors in children. In: PLoS One. 2014 ; Vol. 9, No. 4.
@article{51c92a1a4f9c44788b787d70d687d818,
title = "Examination of different accelerometer cut-points for assessing sedentary behaviors in children",
abstract = "Background: Public health research on sedentary behavior (SB) in youth has heavily relied on accelerometers. However, it has been limited by the lack of consensus on the most accurate accelerometer cut-points as well as by unknown effects caused by accelerometer position (wrist vs. hip) and output (single axis vs. multiple axes). The present study systematically evaluates classification accuracy of different Actigraph cut-points for classifying SB using hip and wrist-worn monitors and establishes new cut-points to enable use of the 3-dimensional vector magnitude data (for both hip and wrist placement). Methods: A total of 125 children ages 7-13 yrs performed 12 randomly selected activities (from a set of 24 different activities) for 5 min each while wearing tri-axial Actigraph accelerometers on both the hip and wrist. The accelerometer data were categorized as either sedentary or non-sedentary minutes using six previously studied cut-points: 100counts-per-minute (CPM), 200CPM, 300CPM, 500CPM, 800CPM and 1100CPM. Classification accuracy was evaluated with Cohen's Kappa (k) and new cut-points were identified from Receiver Operating Characteristic (ROC). Results: Of the six cut-points, the 100CPM value yielded the highest classification accuracy (κ = 0.81) for hip placement. For wrist placement, all of the cut-points produced low classification accuracy (ranges of k from 0.44 to 0.67). Optimal sedentary cut-points derived from ROC were 554.3CPM (ROC-AUC of 0.99) for vector magnitude for hip, 1756CPM (ROC-AUC of 0.94) for vertical axis for wrist, and 3958.3CPM (ROC-AUC of 0.93) for vector magnitude for wrist placement. Conclusions: The 100CPM was supported for use with vertical axis for hip placement, but not for wrist placement. The ROC-derived cut-points can be used to classify youth SB with the wrist and with vector magnitude data.",
author = "Youngwon Kim and Lee, {Jung Min} and Peters, {Bradley P.} and Glenn Gaesser and Welk, {Gregory J.}",
year = "2014",
month = "4",
day = "3",
doi = "10.1371/journal.pone.0090630",
language = "English (US)",
volume = "9",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "4",

}

TY - JOUR

T1 - Examination of different accelerometer cut-points for assessing sedentary behaviors in children

AU - Kim, Youngwon

AU - Lee, Jung Min

AU - Peters, Bradley P.

AU - Gaesser, Glenn

AU - Welk, Gregory J.

PY - 2014/4/3

Y1 - 2014/4/3

N2 - Background: Public health research on sedentary behavior (SB) in youth has heavily relied on accelerometers. However, it has been limited by the lack of consensus on the most accurate accelerometer cut-points as well as by unknown effects caused by accelerometer position (wrist vs. hip) and output (single axis vs. multiple axes). The present study systematically evaluates classification accuracy of different Actigraph cut-points for classifying SB using hip and wrist-worn monitors and establishes new cut-points to enable use of the 3-dimensional vector magnitude data (for both hip and wrist placement). Methods: A total of 125 children ages 7-13 yrs performed 12 randomly selected activities (from a set of 24 different activities) for 5 min each while wearing tri-axial Actigraph accelerometers on both the hip and wrist. The accelerometer data were categorized as either sedentary or non-sedentary minutes using six previously studied cut-points: 100counts-per-minute (CPM), 200CPM, 300CPM, 500CPM, 800CPM and 1100CPM. Classification accuracy was evaluated with Cohen's Kappa (k) and new cut-points were identified from Receiver Operating Characteristic (ROC). Results: Of the six cut-points, the 100CPM value yielded the highest classification accuracy (κ = 0.81) for hip placement. For wrist placement, all of the cut-points produced low classification accuracy (ranges of k from 0.44 to 0.67). Optimal sedentary cut-points derived from ROC were 554.3CPM (ROC-AUC of 0.99) for vector magnitude for hip, 1756CPM (ROC-AUC of 0.94) for vertical axis for wrist, and 3958.3CPM (ROC-AUC of 0.93) for vector magnitude for wrist placement. Conclusions: The 100CPM was supported for use with vertical axis for hip placement, but not for wrist placement. The ROC-derived cut-points can be used to classify youth SB with the wrist and with vector magnitude data.

AB - Background: Public health research on sedentary behavior (SB) in youth has heavily relied on accelerometers. However, it has been limited by the lack of consensus on the most accurate accelerometer cut-points as well as by unknown effects caused by accelerometer position (wrist vs. hip) and output (single axis vs. multiple axes). The present study systematically evaluates classification accuracy of different Actigraph cut-points for classifying SB using hip and wrist-worn monitors and establishes new cut-points to enable use of the 3-dimensional vector magnitude data (for both hip and wrist placement). Methods: A total of 125 children ages 7-13 yrs performed 12 randomly selected activities (from a set of 24 different activities) for 5 min each while wearing tri-axial Actigraph accelerometers on both the hip and wrist. The accelerometer data were categorized as either sedentary or non-sedentary minutes using six previously studied cut-points: 100counts-per-minute (CPM), 200CPM, 300CPM, 500CPM, 800CPM and 1100CPM. Classification accuracy was evaluated with Cohen's Kappa (k) and new cut-points were identified from Receiver Operating Characteristic (ROC). Results: Of the six cut-points, the 100CPM value yielded the highest classification accuracy (κ = 0.81) for hip placement. For wrist placement, all of the cut-points produced low classification accuracy (ranges of k from 0.44 to 0.67). Optimal sedentary cut-points derived from ROC were 554.3CPM (ROC-AUC of 0.99) for vector magnitude for hip, 1756CPM (ROC-AUC of 0.94) for vertical axis for wrist, and 3958.3CPM (ROC-AUC of 0.93) for vector magnitude for wrist placement. Conclusions: The 100CPM was supported for use with vertical axis for hip placement, but not for wrist placement. The ROC-derived cut-points can be used to classify youth SB with the wrist and with vector magnitude data.

UR - http://www.scopus.com/inward/record.url?scp=84899057792&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84899057792&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0090630

DO - 10.1371/journal.pone.0090630

M3 - Article

VL - 9

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 4

M1 - e90630

ER -