Evolution of physical and electronic structures of bilayer graphene upon chemical functionalization

Qing Hua Wang, Chih Jen Shih, Geraldine L.C. Paulus, Michael S. Strano

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

The chemical behavior of bilayer graphene under strong covalent and noncovalent functionalization is relatively unknown compared to monolayer graphene, which has been far more widely studied. Bilayer graphene is significantly less chemically reactive than monolayer graphene, making it more challenging to study its chemistry in detail. However, bilayer graphene is increasingly attractive for electronic applications rather than monolayer graphene because of its electric-field-controllable band gap, and there is a need for a greater understanding of its chemical functionalization. In this paper, we study the covalent and noncovalent functionalization of bilayer graphene using an electrochemical process with aryl diazonium salts in the high conversion regime (D/G ratio >1), and we use Raman spectroscopic mapping and conductive atomic force microscopy (cAFM) to study the resulting changes in the physical and electronic structures. Covalent functionalization at high chemical conversion induces distinct changes in the Raman spectrum of bilayer graphene including the broadening and shift in position of the split G peak. Also, the D peak becomes active with four components. We report for the first time that the broadening of the 2D22 and 2D21 components is a distinct indicator of covalent functionalization, whereas the decrease in intensity of the 2D11 and 2D12 peaks corresponds to doping. Conductive AFM imaging shows physisorbed species from noncovalent functionalization can be removed by mechanical and electrical influence from the AFM tip, and that changes in conductivity due to functionalization are inhomogeneous. These results allow one to distinguish covalent from noncovalent chemistry as a guide for further studies of the chemistry of bilayer graphene.

Original languageEnglish (US)
Pages (from-to)18866-18875
Number of pages10
JournalJournal of the American Chemical Society
Volume135
Issue number50
DOIs
StatePublished - Dec 18 2013
Externally publishedYes

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Evolution of physical and electronic structures of bilayer graphene upon chemical functionalization'. Together they form a unique fingerprint.

Cite this