TY - JOUR
T1 - Evidence for impulsivity in the Spontaneously Hypertensive Rat drawn from complementary response-withholding tasks
AU - Sanabria, Federico
AU - Killeen, Peter R.
N1 - Funding Information:
NIMH R01 MH066860 supported this research. We thank Paul M. Jellison for data collection and animal handling, Vinesa Gomez for data analysis, and Lewis A. Bizo for advice. Correspondence concerning this article should be addressed to Federico Sanabria, Department of Psychology, Arizona State University, P.O. Box 871104, Tempe, Arizona 85287-1104, most expeditiously at Federico.Sanabria@asu.edu.
PY - 2008/2/8
Y1 - 2008/2/8
N2 - Background: The inability to inhibit reinforced responses is a defining feature of ADHD associated with impulsivity. The Spontaneously Hypertensive Rat (SHR) has been extolled as an animal model of ADHD, but there is no clear experimental evidence of inhibition deficits in SHR. Attempts to demonstrate these deficits may have suffered from methodological and analytical limitations. Methods: We provide a rationale for using two complementary response-withholding tasks to doubly dissociate impulsivity from motivational and motor processes. In the lever-holding task (LHT), continual lever depression was required for a minimum interval. Under a differential reinforcement of low rates schedule (DRL), a minimum interval was required between lever presses. Both tasks were studied using SHR and two normotensive control strains, Wistar-Kyoto (WKY) and Long Evans (LE), over an overlapping range of intervals (1 - 5 s for LHT and 5 - 60 s for DRL). Lever-holding and DRL performance was characterized as the output of a mixture of two processes, timing and iterative random responding; we call this account of response inhibition the Temporal Regulation (TR) model. In the context of TR, impulsivity was defined as a bias toward premature termination of the timed intervals. Results: The TR model provided an accurate description of LHT and DRL performance. On the basis of TR parameter estimates, SHRs were more impulsive than LE rats across tasks and target times. WKY rats produced substantially shorter timed responses in the lever-holding task than in DRL, suggesting a motivational or motor deficit. The precision of timing by SHR, as measured by the variance of their timed intervals, was excellent, flouting expectations from ADHD research. Conclusion: This research validates the TR model of response inhibition and supports SHR as an animal model of ADHD-related impulsivity. It indicates, however, that SHR's impulse-control deficit is not caused by imprecise timing. The use of ad hoc impulsivity metrics and of WKY as control strain for SHR impulsivity are called into question.
AB - Background: The inability to inhibit reinforced responses is a defining feature of ADHD associated with impulsivity. The Spontaneously Hypertensive Rat (SHR) has been extolled as an animal model of ADHD, but there is no clear experimental evidence of inhibition deficits in SHR. Attempts to demonstrate these deficits may have suffered from methodological and analytical limitations. Methods: We provide a rationale for using two complementary response-withholding tasks to doubly dissociate impulsivity from motivational and motor processes. In the lever-holding task (LHT), continual lever depression was required for a minimum interval. Under a differential reinforcement of low rates schedule (DRL), a minimum interval was required between lever presses. Both tasks were studied using SHR and two normotensive control strains, Wistar-Kyoto (WKY) and Long Evans (LE), over an overlapping range of intervals (1 - 5 s for LHT and 5 - 60 s for DRL). Lever-holding and DRL performance was characterized as the output of a mixture of two processes, timing and iterative random responding; we call this account of response inhibition the Temporal Regulation (TR) model. In the context of TR, impulsivity was defined as a bias toward premature termination of the timed intervals. Results: The TR model provided an accurate description of LHT and DRL performance. On the basis of TR parameter estimates, SHRs were more impulsive than LE rats across tasks and target times. WKY rats produced substantially shorter timed responses in the lever-holding task than in DRL, suggesting a motivational or motor deficit. The precision of timing by SHR, as measured by the variance of their timed intervals, was excellent, flouting expectations from ADHD research. Conclusion: This research validates the TR model of response inhibition and supports SHR as an animal model of ADHD-related impulsivity. It indicates, however, that SHR's impulse-control deficit is not caused by imprecise timing. The use of ad hoc impulsivity metrics and of WKY as control strain for SHR impulsivity are called into question.
UR - http://www.scopus.com/inward/record.url?scp=41549155083&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=41549155083&partnerID=8YFLogxK
U2 - 10.1186/1744-9081-4-7
DO - 10.1186/1744-9081-4-7
M3 - Article
C2 - 18261220
AN - SCOPUS:41549155083
VL - 4
JO - Behavioral and Brain Functions
JF - Behavioral and Brain Functions
SN - 1744-9081
M1 - 7
ER -