Abstract
Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.
Original language | English (US) |
---|---|
Article number | e2113561119 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 119 |
Issue number | 15 |
DOIs | |
State | Published - Apr 12 2022 |
Keywords
- COVID-19
- ensemble forecast
- forecasting
- model evaluation
ASJC Scopus subject areas
- General
Fingerprint
Dive into the research topics of 'Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 119, No. 15, e2113561119, 12.04.2022.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States
AU - Cramer, Estee Y.
AU - Ray, Evan L.
AU - Lopez, Velma K.
AU - Bracher, Johannes
AU - Brennen, Andrea
AU - Castro Rivadeneira, Alvaro J.
AU - Gerding, Aaron
AU - Gneiting, Tilmann
AU - House, Katie H.
AU - Huang, Yuxin
AU - Jayawardena, Dasuni
AU - Kanji, Abdul H.
AU - Khandelwal, Ayush
AU - Le, Khoa
AU - Mühlemann, Anja
AU - Niemi, Jarad
AU - Shah, Apurv
AU - Stark, Ariane
AU - Wang, Yijin
AU - Wattanachit, Nutcha
AU - Zorn, Martha W.
AU - Gu, Youyang
AU - Jain, Sansiddh
AU - Bannur, Nayana
AU - Deva, Ayush
AU - Kulkarni, Mihir
AU - Merugu, Srujana
AU - Raval, Alpan
AU - Shingi, Siddhant
AU - Tiwari, Avtansh
AU - White, Jerome
AU - Abernethy, Neil F.
AU - Woody, Spencer
AU - Dahan, Maytal
AU - Fox, Spencer
AU - Gaither, Kelly
AU - Lachmann, Michael
AU - Meyers, Lauren Ancel
AU - Scott, James G.
AU - Tec, Mauricio
AU - Srivastava, Ajitesh
AU - George, Glover E.
AU - Cegan, Jeffrey C.
AU - Dettwiller, Ian D.
AU - England, William P.
AU - Farthing, Matthew W.
AU - Hunter, Robert H.
AU - Lafferty, Brandon
AU - Linkov, Igor
AU - Mayo, Michael L.
AU - Parno, Matthew D.
AU - Rowland, Michael A.
AU - Trump, Benjamin D.
AU - Zhang-James, Yanli
AU - Chen, Samuel
AU - Faraone, Stephen V.
AU - Hess, Jonathan
AU - Morley, Christopher P.
AU - Salekin, Asif
AU - Wang, Dongliang
AU - Corsetti, Sabrina M.
AU - Baer, Thomas M.
AU - Eisenberg, Marisa C.
AU - Falb, Karl
AU - Huang, Yitao
AU - Martin, Emily T.
AU - McCauley, Ella
AU - Myers, Robert L.
AU - Schwarz, Tom
AU - Sheldon, Daniel
AU - Gibson, Graham Casey
AU - Yu, Rose
AU - Gao, Liyao
AU - Ma, Yian
AU - Wu, Dongxia
AU - Yan, Xifeng
AU - Jin, Xiaoyong
AU - Wang, Yu Xiang
AU - Chen, Yang Quan
AU - Guo, Lihong
AU - Zhao, Yanting
AU - Gu, Quanquan
AU - Chen, Jinghui
AU - Wang, Lingxiao
AU - Xu, Pan
AU - Zhang, Weitong
AU - Zou, Difan
AU - Biegel, Hannah
AU - Lega, Joceline
AU - McConnell, Steve
AU - Nagraj, V. P.
AU - Guertin, Stephanie L.
AU - Hulme-Lowe, Christopher
AU - Turner, Stephen D.
AU - Shi, Yunfeng
AU - Ban, Xuegang
AU - Walraven, Robert
AU - Hong, Qi Jun
AU - Kong, Stanley
AU - van de Walle, Axel
AU - Turtle, James A.
AU - Ben-Nun, Michal
AU - Riley, Steven
AU - Riley, Pete
AU - Koyluoglu, Ugur
AU - DesRoches, David
AU - Forli, Pedro
AU - Hamory, Bruce
AU - Kyriakides, Christina
AU - Leis, Helen
AU - Milliken, John
AU - Moloney, Michael
AU - Morgan, James
AU - Nirgudkar, Ninad
AU - Ozcan, Gokce
AU - Piwonka, Noah
AU - Ravi, Matt
AU - Schrader, Chris
AU - Shakhnovich, Elizabeth
AU - Siegel, Daniel
AU - Spatz, Ryan
AU - Stiefeling, Chris
AU - Wilkinson, Barrie
AU - Wong, Alexander
AU - Cavany, Sean
AU - España, Guido
AU - Moore, Sean
AU - Oidtman, Rachel
AU - Perkins, Alex
AU - Kraus, David
AU - Kraus, Andrea
AU - Gao, Zhifeng
AU - Bian, Jiang
AU - Cao, Wei
AU - Ferres, Juan Lavista
AU - Li, Chaozhuo
AU - Liu, Tie Yan
AU - Xie, Xing
AU - Zhang, Shun
AU - Zheng, Shun
AU - Vespignani, Alessandro
AU - Chinazzi, Matteo
AU - Davis, Jessica T.
AU - Mu, Kunpeng
AU - Pastore y Piontti, Ana
AU - Xiong, Xinyue
AU - Zheng, Andrew
AU - Baek, Jackie
AU - Farias, Vivek
AU - Georgescu, Andreea
AU - Levi, Retsef
AU - Sinha, Deeksha
AU - Wilde, Joshua
AU - Perakis, Georgia
AU - Bennouna, Mohammed Amine
AU - Nze-Ndong, David
AU - Singhvi, Divya
AU - Spantidakis, Ioannis
AU - Thayaparan, Leann
AU - Tsiourvas, Asterios
AU - Sarker, Arnab
AU - Jadbabaie, Ali
AU - Shah, Devavrat
AU - Penna, Nicolas Della
AU - Celi, Leo A.
AU - Sundar, Saketh
AU - Wolfinger, Russ
AU - Osthus, Dave
AU - Castro, Lauren
AU - Fairchild, Geoffrey
AU - Michaud, Isaac
AU - Karlen, Dean
AU - Kinsey, Matt
AU - Mullany, Luke C.
AU - Rainwater-Lovett, Kaitlin
AU - Shin, Lauren
AU - Tallaksen, Katharine
AU - Wilson, Shelby
AU - Lee, Elizabeth C.
AU - Dent, Juan
AU - Grantz, Kyra H.
AU - Hill, Alison L.
AU - Kaminsky, Joshua
AU - Kaminsky, Kathryn
AU - Keegan, Lindsay T.
AU - Lauer, Stephen A.
AU - Lemaitre, Joseph C.
AU - Lessler, Justin
AU - Meredith, Hannah R.
AU - Perez-Saez, Javier
AU - Shah, Sam
AU - Smith, Claire P.
AU - Truelove, Shaun A.
AU - Wills, Josh
AU - Marshall, Maximilian
AU - Gardner, Lauren
AU - Nixon, Kristen
AU - Burant, John C.
AU - Wang, Lily
AU - Gao, Lei
AU - Gu, Zhiling
AU - Kim, Myungjin
AU - Li, Xinyi
AU - Wang, Guannan
AU - Wang, Yueying
AU - Yu, Shan
AU - Reiner, Robert C.
AU - Barber, Ryan
AU - Gakidou, Emmanuela
AU - Hay, Simon I.
AU - Lim, Steve
AU - Murray, Chris
AU - Pigott, David
AU - Gurung, Heidi L.
AU - Baccam, Prasith
AU - Stage, Steven A.
AU - Suchoski, Bradley T.
AU - Prakash, B. Aditya
AU - Adhikari, Bijaya
AU - Cui, Jiaming
AU - Rodríguez, Alexander
AU - Tabassum, Anika
AU - Xie, Jiajia
AU - Keskinocak, Pinar
AU - Asplund, John
AU - Baxter, Arden
AU - Oruc, Buse Eylul
AU - Serban, Nicoleta
AU - Arik, Sercan O.
AU - Dusenberry, Mike
AU - Epshteyn, Arkady
AU - Kanal, Elli
AU - Le, Long T.
AU - Li, Chun Liang
AU - Pfister, Tomas
AU - Sava, Dario
AU - Sinha, Rajarishi
AU - Tsai, Thomas
AU - Yoder, Nate
AU - Yoon, Jinsung
AU - Zhang, Leyou
AU - Abbott, Sam
AU - Bosse, Nikos I.
AU - Funk, Sebastian
AU - Hellewell, Joel
AU - Meakin, Sophie R.
AU - Sherratt, Katharine
AU - Zhou, Mingyuan
AU - Kalantari, Rahi
AU - Yamana, Teresa K.
AU - Pei, Sen
AU - Shaman, Jeffrey
AU - Li, Michael L.
AU - Bertsimas, Dimitris
AU - Lami, Omar Skali
AU - Soni, Saksham
AU - Bouardi, Hamza Tazi
AU - Ayer, Turgay
AU - Adee, Madeline
AU - Chhatwal, Jagpreet
AU - Dalgic, Ozden O.
AU - Ladd, Mary A.
AU - Linas, Benjamin P.
AU - Mueller, Peter
AU - Xiao, Jade
AU - Wang, Yuanjia
AU - Wang, Qinxia
AU - Xie, Shanghong
AU - Zeng, Donglin
AU - Green, Alden
AU - Bien, Jacob
AU - Brooks, Logan
AU - Hu, Addison J.
AU - Jahja, Maria
AU - McDonald, Daniel
AU - Narasimhan, Balasubramanian
AU - Politsch, Collin
AU - Rajanala, Samyak
AU - Rumack, Aaron
AU - Simon, Noah
AU - Tibshirani, Ryan J.
AU - Tibshirani, Rob
AU - Ventura, Valerie
AU - Wasserman, Larry
AU - O’Dea, Eamon B.
AU - Drake, John M.
AU - Pagano, Robert
AU - Tran, Quoc T.
AU - Ho, Lam Si Tung
AU - Huynh, Huong
AU - Walker, Jo W.
AU - Slayton, Rachel B.
AU - Johansson, Michael A.
AU - Biggerstaff, Matthew
AU - Reich, Nicholas G.
N1 - Funding Information: ACKNOWLEDGMENTS. We report the funding and disclosures below for all teams. The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies. CMU-TimeSeries: CDC Center of Excellence, gifts from Google and Facebook; CU-select: NSF DMS-2027369 and a gift from the Morris-Singer Foundation; COVIDhub: US CDC (1U01IP001122); National Institute of General Medical Sciences (NIGMS) (R35GM119582); Helmholtz Foundation (SIMCARD Information & Data Science Pilot Project); Klaus Tschira Foundation. Columbia_UNC-Surv-Con: GM124104. DDS-NBDS: NSF III-1812699. EPIFORECASTS-ENSEMBLE1: Wellcome Trust (210758/Z/18/Z); GT_CHHS-COVID19: William W. George Endowment, Virginia C. and Joseph C. Mello Endowments, NSF DGE-1650044, NSF MRI 1828187, CDC and Council of state and Territorial Epidemiologists (CSTE) NU38OT000297, The Partnership for Advanced Computing Environment (PACE) at Georgia Tech. Andrea Laliberte, Joseph C. Mello, Richard “Rick” E. and Charlene Zalesky, and Claudia and Paul Raines; GT-DeepCOVID: CDC Modeling Infectious Diseases in Healthcare (MinD-Healthcare) U01CK000531-Supplement; NSF (Expeditions CCF-1918770, CAREER IIS-2028586, Rapid Response Research (RAPID) IIS-2027862, Medium IIS-1955883, and NSF Research Traineeship (NRT) DGE-1545362), CDC MInD program, Oak Ridge National Laboratory (ORNL) and funds/computing resources from Georgia Tech and Georgia Tech Research Institute (GTRI); Institute for Health Metrics and Evaluation (IHME): The Bill & Melinda Gates Foundation; the state of Washington and NSF (FAIN: 2031096); IowaStateLW-STEM: Iowa State University Plant Sciences Institute Scholars Program, NSF DMS-1916204, NSF CCF-1934884, Laurence H. Baker Center for Bioinformatics and Biological Statistics; Johns Hopkins University (JHU) CSSE: NSF RAPID (2108526 and 2028604); JHU_IDD-CovidSP: State of California, US Health and Human Services (HHS), US Department of Health Services (DHS), US Office of Foreign Disaster Assistance, Johns Hopkins Health System, Office of the Dean Johns Hopkins Bloom-berg School of Public Health (JHBSPH), Johns Hopkins University Modeling and Policy Hub, CDC (5U01CK000538-03), University of Utah Immunology, Inflammation, & Infectious Disease Initiative (26798 Seed Grant); LANL-GrowthRate: Los Alamos National Lab (LANL) Laboratory Directed Research and Development (LDRD) 20200700ER; MOBS-GLEAM_COVID: COVID Supplement CDC-HHS-6U01IP001137-01; CSTE Cooperative Agreement No. NU38OT000297; NotreDame-mobility and NotreDame-FRED: NSF RAPID Division of Environmental Biology (DEB) 2027718; PSI-DRAFT: NSF RAPID Grant No. 2031536; UA-EpiCovDA: NSF RAPID DMS 2028401; UCSB-ACTS: NSF RAPID Division of Information and Intelligent Systems (IIS) 2029626; UCSD-NEU: Google Faculty Award, Defense Advanced Research Projects Agency (DARPA) W31P4Q-21-C-0014, COVID Supplement CDC-HHS-6U01IP001137-01; UMass-MechBayes: NIGMS R35GM119582, NSF 1749854; UMich-RidgeTfReg: University of Michigan Physics Department and Office of Research; Covid19Sim-Simulator: NSF awards 2035360 and 2035361; and Gordon and Betty Moore Foundation and Rockefeller Foundation to support the work of the Society for Medical Decision Making COVID-19 Decision Modeling Initiative. Funding Information: We report the funding and disclosures below for all teams. The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies. CMU-TimeSeries: CDC Center of Excellence, gifts from Google and Facebook; CU-select: NSF DMS-2027369 and a gift from the Morris-Singer Foundation; COVIDhub: US CDC (1U01IP001122); National Institute of General Medical Sciences (NIGMS) (R35GM119582); Helmholtz Foundation (SIMCARD Information & Data Science Pilot Project); Klaus Tschira Foundation. Columbia_UNC-SurvCon: GM124104. DDS-NBDS: NSF III-1812699. EPIFORECASTS-ENSEMBLE1: Wellcome Trust (210758/Z/18/Z);_GT_CHHS-COVID19: William W. George Endowment, Virginia C. and Joseph C. Mello Endowments, NSF DGE-1650044, NSF MRI 1828187, CDC and Council of state and Territorial Epidemiologists (CSTE) NU38OT000297, The Partnership for Advanced Computing Environment (PACE) at Georgia Tech. Andrea Laliberte, Joseph C. Mello, Richard “Rick” E. and Charlene Zalesky, and Claudia and Paul Raines; GT-DeepCOVID: CDC Modeling Infectious Diseases in Healthcare (MinD-Healthcare) U01CK000531-Supplement; NSF (Expeditions CCF-1918770, CAREER IIS-2028586, Rapid Response Research (RAPID) IIS-2027862, Medium IIS-1955883, and NSF Research Traineeship (NRT) DGE-1545362), CDC MInD program, Oak Ridge National Laboratory (ORNL) and funds/computing resources from Georgia Tech and Georgia Tech Research Institute (GTRI); Institute for Health Metrics and Evaluation (IHME): The Bill & Melinda Gates Foundation; the state of Washington and NSF (FAIN: 2031096); IowaStateLW-STEM: Iowa State University Plant Sciences Institute Scholars Program, NSF DMS-1916204, NSF CCF-1934884, Laurence H. Baker Center for Bioinformatics and Biological Statistics; Johns Hopkins University (JHU) CSSE: NSF RAPID (2108526 and 2028604); JHU_IDD-CovidSP: State of California, US Health and Human Services (HHS), US Department of Health Services (DHS), US Office of Foreign Disaster Assistance, Johns Hopkins Health System, Office of the Dean Johns Hopkins Bloomberg School of Public Health (JHBSPH), Johns Hopkins University Modeling and Policy Hub, CDC (5U01CK000538-03), University of Utah Immunology, Inflammation, & Infectious Disease Initiative (26798 Seed Grant); LANL-GrowthRate: Los Alamos National Lab (LANL) Laboratory Directed Research and Development (LDRD) 20200700ER; MOBS-GLEAM_COVID: COVID Supplement CDC-HHS-6U01IP001137-01; CSTE Cooperative Agreement No. NU38OT000297; NotreDame-mobility and NotreDame-FRED: NSF RAPID Division of Environmental Biology (DEB) 2027718; PSI-DRAFT: NSF RAPID Grant No. 2031536; UA-EpiCovDA: NSF RAPID DMS 2028401; UCSB-ACTS: NSF RAPID Division of Information and Intelligent Systems (IIS) 2029626; UCSD-NEU: Google Faculty Award, Defense Advanced Research Projects Agency (DARPA) W31P4Q-21-C-0014, COVID Supplement CDC-HHS-6U01IP001137-01; UMass-MechBayes: NIGMS R35GM119582, NSF 1749854; UMich-RidgeTfReg: University of Michigan Physics Department and Office of Research; Covid19Sim-Simulator: NSF awards 2035360 and 2035361; and Gordon and Betty Moore Foundation and Rockefeller Foundation to support the work of the Society for Medical Decision Making COVID-19 Decision Modeling Initiative. Publisher Copyright: © 2022 National Academy of Sciences. All rights reserved.
PY - 2022/4/12
Y1 - 2022/4/12
N2 - Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.
AB - Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.
KW - COVID-19
KW - ensemble forecast
KW - forecasting
KW - model evaluation
UR - http://www.scopus.com/inward/record.url?scp=85127843410&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127843410&partnerID=8YFLogxK
U2 - 10.1073/pnas.2113561119
DO - 10.1073/pnas.2113561119
M3 - Article
C2 - 35394862
AN - SCOPUS:85127843410
SN - 0027-8424
VL - 119
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 15
M1 - e2113561119
ER -