TY - JOUR
T1 - Estrogen to Progesterone Ratio and Fluid Regulatory Responses to Varying Degrees and Methods of Dehydration
AU - Giersch, Gabrielle E.W.
AU - Charkoudian, Nisha
AU - Morrissey, Margaret C.
AU - Butler, Cody R.
AU - Colburn, Abigail T.
AU - Caldwell, Aaron R.
AU - Kavouras, Stavros A.
AU - Casa, Douglas J.
N1 - Funding Information:
This work was funded in part by NextFlex, Grant/Award Number: PC2.8.
Funding Information:
Conflict of Interest: SK has provided scientific consultation to Danone Research and Quest Diagnostics and has active research grants with Danone Research and Standard Process. DC has served as expert witness and received consulting honoraria from Clif Bar, Sports Innovation Laboratories, and the National Football League, funding from Gatorade, and royalties from Jones and Bartlett, Springer, LWW, Wolters-Kluwer Publishers, Up-to-Date, and Routledge/Taylor & Francis Group.
Publisher Copyright:
Copyright © 2021 Giersch, Charkoudian, Morrissey, Butler, Colburn, Caldwell, Kavouras and Casa.
PY - 2021/10/14
Y1 - 2021/10/14
N2 - The purpose of this study was to investigate the relationship between volume regulatory biomarkers and the estrogen to progesterone ratio (E:P) prior to and following varying methods and degrees of dehydration. Ten women (20 ± 1 year, 56.98 ± 7.25 kg, 164 ± 6 cm, 39.59 ± 2.96 mL•kg•min−1) completed four intermittent exercise trials (1.5 h, 33.8 ± 1.3°C, 49.5 ± 4.3% relative humidity). Testing took place in two hydration conditions, dehydrated via 24-h fluid restriction (Dehy, USG > 1.020) and euhydrated (Euhy, USG ≤ 1.020), and in two phases of the menstrual cycle, the late follicular phase (days 10–13) and midluteal phase (days 18–22). Change in body mass (%BMΔ), serum copeptin concentration, and plasma osmolality (Posm) were assessed before and after both dehydration stimuli (24-h fluid restriction and exercise heat stress). Serum estrogen and progesterone were analyzed pre-exercise only. Estrogen concentration did not differ between phases or hydration conditions. Progesterone was significantly elevated in luteal compared to follicular in both hydration conditions (Dehy—follicular: 1.156 ± 0.31, luteal: 5.190 ± 1.56 ng•mL−1, P < 0.05; Euhy—follicular: 0.915 ± 0.18, luteal: 4.498 ± 1.38 ng·mL−1, P < 0.05). As expected, E:P was significantly greater in the follicular phase compared to luteal in both hydration conditions (Dehy—F:138.94 ± 89.59, L: 64.22 ± 84.55, P < 0.01; Euhy—F:158.13 ± 70.15, L: 50.98 ± 39.69, P < 0.01, [all •103]). Copeptin concentration was increased following 24-h fluid restriction and exercise heat stress (mean change: 18 ± 9.4, P < 0.01). We observed a possible relationship of lower E:P and higher copeptin concentration following 24-h fluid restriction (r = −0.35, P = 0.054). While these results did not reach the level of statistical significance, these data suggest that the differing E:P ratio may alter fluid volume regulation during low levels of dehydration but have no apparent impact after dehydrating exercise in the heat.
AB - The purpose of this study was to investigate the relationship between volume regulatory biomarkers and the estrogen to progesterone ratio (E:P) prior to and following varying methods and degrees of dehydration. Ten women (20 ± 1 year, 56.98 ± 7.25 kg, 164 ± 6 cm, 39.59 ± 2.96 mL•kg•min−1) completed four intermittent exercise trials (1.5 h, 33.8 ± 1.3°C, 49.5 ± 4.3% relative humidity). Testing took place in two hydration conditions, dehydrated via 24-h fluid restriction (Dehy, USG > 1.020) and euhydrated (Euhy, USG ≤ 1.020), and in two phases of the menstrual cycle, the late follicular phase (days 10–13) and midluteal phase (days 18–22). Change in body mass (%BMΔ), serum copeptin concentration, and plasma osmolality (Posm) were assessed before and after both dehydration stimuli (24-h fluid restriction and exercise heat stress). Serum estrogen and progesterone were analyzed pre-exercise only. Estrogen concentration did not differ between phases or hydration conditions. Progesterone was significantly elevated in luteal compared to follicular in both hydration conditions (Dehy—follicular: 1.156 ± 0.31, luteal: 5.190 ± 1.56 ng•mL−1, P < 0.05; Euhy—follicular: 0.915 ± 0.18, luteal: 4.498 ± 1.38 ng·mL−1, P < 0.05). As expected, E:P was significantly greater in the follicular phase compared to luteal in both hydration conditions (Dehy—F:138.94 ± 89.59, L: 64.22 ± 84.55, P < 0.01; Euhy—F:158.13 ± 70.15, L: 50.98 ± 39.69, P < 0.01, [all •103]). Copeptin concentration was increased following 24-h fluid restriction and exercise heat stress (mean change: 18 ± 9.4, P < 0.01). We observed a possible relationship of lower E:P and higher copeptin concentration following 24-h fluid restriction (r = −0.35, P = 0.054). While these results did not reach the level of statistical significance, these data suggest that the differing E:P ratio may alter fluid volume regulation during low levels of dehydration but have no apparent impact after dehydrating exercise in the heat.
KW - copeptin
KW - exercise heat stress
KW - female sex hormones
KW - fluid balance
KW - fluid restriction
UR - http://www.scopus.com/inward/record.url?scp=85124535021&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85124535021&partnerID=8YFLogxK
U2 - 10.3389/fspor.2021.722305
DO - 10.3389/fspor.2021.722305
M3 - Article
AN - SCOPUS:85124535021
SN - 2624-9367
VL - 3
JO - Frontiers in Sports and Active Living
JF - Frontiers in Sports and Active Living
M1 - 722305
ER -