Estimation of annual mileage budgets for a multiple discrete-continuous choice model of household vehicle ownership and utilization

Bertho Augustin, Abdul R. Pinjari, Naveen Eluru, Ram Pendyala

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

This paper presents an empirical comparison of the following approaches to estimate annual mileage budgets for multiple discrete-continuous extreme value (MDCEV) models of household vehicle ownership and utilization: (a) a log-linear regression approach to model observed total annual household vehicle miles traveled (AH-VMT), (b) a stochastic frontier regression approach to model latent annual vehicle mileage frontier, and (c) other approaches used in the literature to assume annual household vehicle mileage budgets. For the stochastic regression approach, MDCEV and multiple discrete-continuous heteroscedastic extreme value (MDCHEV) models were estimated and examined. When model predictions were compared with observed distributions of vehicle ownership and utilization in a validation data sample, the log-linear regression approach performed better than other approaches. However, policy simulations demonstrate that the log-linear regression approach does not allow for AH-VMT to increase or decrease as a result of changes in vehicle-specific attributes, such as changes in fuel economy. The stochastic frontier approach overcomes that limitation. Policy simulation results with the stochastic frontier approach suggest that increasing the fuel economy of a category of vehicles increases the ownership and use of those vehicles. But this does not necessarily translate into an equal decrease in the use of other household vehicles, confirming previous findings in the literature that improvements in fuel economy tend to induce additional travel. In view of policy responsiveness and prediction accuracy, using the stochastic frontier regression (for estimating mileage budgets) in conjunction with the MDCHEV model for discrete-continuous choice analysis of household vehicle ownership and utilization is recommended.

Original languageEnglish (US)
Pages (from-to)126-135
Number of pages10
JournalTransportation Research Record
Volume2493
DOIs
StatePublished - 2015
Externally publishedYes

Fingerprint

Fuel economy
Linear regression

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Mechanical Engineering

Cite this

Estimation of annual mileage budgets for a multiple discrete-continuous choice model of household vehicle ownership and utilization. / Augustin, Bertho; Pinjari, Abdul R.; Eluru, Naveen; Pendyala, Ram.

In: Transportation Research Record, Vol. 2493, 2015, p. 126-135.

Research output: Contribution to journalArticle

@article{69b5b9f041ed496cad6d89cbb0081e22,
title = "Estimation of annual mileage budgets for a multiple discrete-continuous choice model of household vehicle ownership and utilization",
abstract = "This paper presents an empirical comparison of the following approaches to estimate annual mileage budgets for multiple discrete-continuous extreme value (MDCEV) models of household vehicle ownership and utilization: (a) a log-linear regression approach to model observed total annual household vehicle miles traveled (AH-VMT), (b) a stochastic frontier regression approach to model latent annual vehicle mileage frontier, and (c) other approaches used in the literature to assume annual household vehicle mileage budgets. For the stochastic regression approach, MDCEV and multiple discrete-continuous heteroscedastic extreme value (MDCHEV) models were estimated and examined. When model predictions were compared with observed distributions of vehicle ownership and utilization in a validation data sample, the log-linear regression approach performed better than other approaches. However, policy simulations demonstrate that the log-linear regression approach does not allow for AH-VMT to increase or decrease as a result of changes in vehicle-specific attributes, such as changes in fuel economy. The stochastic frontier approach overcomes that limitation. Policy simulation results with the stochastic frontier approach suggest that increasing the fuel economy of a category of vehicles increases the ownership and use of those vehicles. But this does not necessarily translate into an equal decrease in the use of other household vehicles, confirming previous findings in the literature that improvements in fuel economy tend to induce additional travel. In view of policy responsiveness and prediction accuracy, using the stochastic frontier regression (for estimating mileage budgets) in conjunction with the MDCHEV model for discrete-continuous choice analysis of household vehicle ownership and utilization is recommended.",
author = "Bertho Augustin and Pinjari, {Abdul R.} and Naveen Eluru and Ram Pendyala",
year = "2015",
doi = "10.3141/2493-14",
language = "English (US)",
volume = "2493",
pages = "126--135",
journal = "Transportation Research Record",
issn = "0361-1981",
publisher = "US National Research Council",

}

TY - JOUR

T1 - Estimation of annual mileage budgets for a multiple discrete-continuous choice model of household vehicle ownership and utilization

AU - Augustin, Bertho

AU - Pinjari, Abdul R.

AU - Eluru, Naveen

AU - Pendyala, Ram

PY - 2015

Y1 - 2015

N2 - This paper presents an empirical comparison of the following approaches to estimate annual mileage budgets for multiple discrete-continuous extreme value (MDCEV) models of household vehicle ownership and utilization: (a) a log-linear regression approach to model observed total annual household vehicle miles traveled (AH-VMT), (b) a stochastic frontier regression approach to model latent annual vehicle mileage frontier, and (c) other approaches used in the literature to assume annual household vehicle mileage budgets. For the stochastic regression approach, MDCEV and multiple discrete-continuous heteroscedastic extreme value (MDCHEV) models were estimated and examined. When model predictions were compared with observed distributions of vehicle ownership and utilization in a validation data sample, the log-linear regression approach performed better than other approaches. However, policy simulations demonstrate that the log-linear regression approach does not allow for AH-VMT to increase or decrease as a result of changes in vehicle-specific attributes, such as changes in fuel economy. The stochastic frontier approach overcomes that limitation. Policy simulation results with the stochastic frontier approach suggest that increasing the fuel economy of a category of vehicles increases the ownership and use of those vehicles. But this does not necessarily translate into an equal decrease in the use of other household vehicles, confirming previous findings in the literature that improvements in fuel economy tend to induce additional travel. In view of policy responsiveness and prediction accuracy, using the stochastic frontier regression (for estimating mileage budgets) in conjunction with the MDCHEV model for discrete-continuous choice analysis of household vehicle ownership and utilization is recommended.

AB - This paper presents an empirical comparison of the following approaches to estimate annual mileage budgets for multiple discrete-continuous extreme value (MDCEV) models of household vehicle ownership and utilization: (a) a log-linear regression approach to model observed total annual household vehicle miles traveled (AH-VMT), (b) a stochastic frontier regression approach to model latent annual vehicle mileage frontier, and (c) other approaches used in the literature to assume annual household vehicle mileage budgets. For the stochastic regression approach, MDCEV and multiple discrete-continuous heteroscedastic extreme value (MDCHEV) models were estimated and examined. When model predictions were compared with observed distributions of vehicle ownership and utilization in a validation data sample, the log-linear regression approach performed better than other approaches. However, policy simulations demonstrate that the log-linear regression approach does not allow for AH-VMT to increase or decrease as a result of changes in vehicle-specific attributes, such as changes in fuel economy. The stochastic frontier approach overcomes that limitation. Policy simulation results with the stochastic frontier approach suggest that increasing the fuel economy of a category of vehicles increases the ownership and use of those vehicles. But this does not necessarily translate into an equal decrease in the use of other household vehicles, confirming previous findings in the literature that improvements in fuel economy tend to induce additional travel. In view of policy responsiveness and prediction accuracy, using the stochastic frontier regression (for estimating mileage budgets) in conjunction with the MDCHEV model for discrete-continuous choice analysis of household vehicle ownership and utilization is recommended.

UR - http://www.scopus.com/inward/record.url?scp=84964640610&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84964640610&partnerID=8YFLogxK

U2 - 10.3141/2493-14

DO - 10.3141/2493-14

M3 - Article

VL - 2493

SP - 126

EP - 135

JO - Transportation Research Record

JF - Transportation Research Record

SN - 0361-1981

ER -