Estimation and kinetic analysis of insulin-independent glucose uptake in human subjects

I. Gottesman, L. Mandarino, J. Gerich

    Research output: Contribution to journalArticlepeer-review

    77 Scopus citations

    Abstract

    Using the glucose clamp technique, glucose uptake was determined isotopically in normal human volunteers at plasma glucose concentrations of ≃60, 95, and 160 mg/dl during insulin infusions that increased plasma insulin to ≃20, 80, and 160 μU/ml. Because glucose uptake was found to be a linear function of plasma insulin at each plasma glucose concentration (r > 0.92, P < 0.01), glucose uptake at 0 plasma insulin was estimated by linear regression analysis. The values thus derived (1.30, 1.62, and 2.59 mg · kg-1 · min-1 for plasma glucose concentrations of 60, 95, and 160 mg/dl, respectively) produced a linear Eadie-Hofstee plot, suggesting that insulin-independent glucose uptake followed Michaelis-Menten kinetics. The K(m) for glucose uptake at 0 plasma insulin (≃10 mM) was similar to those observed for glucose uptake at the other plasma insulin concentrations studied (≃9-12 mM), but its V(max) was less (5.2 vs. 6.4, 18.5, and 26.8 mg · kg-1 · min-1 for ≃20, 80, and 160 U/ml, respectively). These results indicate that in postabsorptive human subjects 75-85% of glucose uptake is noninsulin-mediated and provide additional support for the concept that insulin may increase glucose uptake merely by providing additional transport sites. The method described herein provides an assessment of insulin-dependent glucose uptake in vivo that may prove useful in distinguishing between intrinsic defects of the glucose transport system and those due to defects in insulin action.

    Original languageEnglish (US)
    Pages (from-to)E632-E635
    JournalAmerican Journal of Physiology - Endocrinology and Metabolism
    Volume7
    Issue number6
    DOIs
    StatePublished - 1983

    ASJC Scopus subject areas

    • Endocrinology, Diabetes and Metabolism
    • Physiology
    • Physiology (medical)

    Fingerprint

    Dive into the research topics of 'Estimation and kinetic analysis of insulin-independent glucose uptake in human subjects'. Together they form a unique fingerprint.

    Cite this