TY - JOUR
T1 - Estimation and kinetic analysis of insulin-independent glucose uptake in human subjects
AU - Gottesman, I.
AU - Mandarino, L.
AU - Gerich, J.
PY - 1983
Y1 - 1983
N2 - Using the glucose clamp technique, glucose uptake was determined isotopically in normal human volunteers at plasma glucose concentrations of ≃60, 95, and 160 mg/dl during insulin infusions that increased plasma insulin to ≃20, 80, and 160 μU/ml. Because glucose uptake was found to be a linear function of plasma insulin at each plasma glucose concentration (r > 0.92, P < 0.01), glucose uptake at 0 plasma insulin was estimated by linear regression analysis. The values thus derived (1.30, 1.62, and 2.59 mg · kg-1 · min-1 for plasma glucose concentrations of 60, 95, and 160 mg/dl, respectively) produced a linear Eadie-Hofstee plot, suggesting that insulin-independent glucose uptake followed Michaelis-Menten kinetics. The K(m) for glucose uptake at 0 plasma insulin (≃10 mM) was similar to those observed for glucose uptake at the other plasma insulin concentrations studied (≃9-12 mM), but its V(max) was less (5.2 vs. 6.4, 18.5, and 26.8 mg · kg-1 · min-1 for ≃20, 80, and 160 U/ml, respectively). These results indicate that in postabsorptive human subjects 75-85% of glucose uptake is noninsulin-mediated and provide additional support for the concept that insulin may increase glucose uptake merely by providing additional transport sites. The method described herein provides an assessment of insulin-dependent glucose uptake in vivo that may prove useful in distinguishing between intrinsic defects of the glucose transport system and those due to defects in insulin action.
AB - Using the glucose clamp technique, glucose uptake was determined isotopically in normal human volunteers at plasma glucose concentrations of ≃60, 95, and 160 mg/dl during insulin infusions that increased plasma insulin to ≃20, 80, and 160 μU/ml. Because glucose uptake was found to be a linear function of plasma insulin at each plasma glucose concentration (r > 0.92, P < 0.01), glucose uptake at 0 plasma insulin was estimated by linear regression analysis. The values thus derived (1.30, 1.62, and 2.59 mg · kg-1 · min-1 for plasma glucose concentrations of 60, 95, and 160 mg/dl, respectively) produced a linear Eadie-Hofstee plot, suggesting that insulin-independent glucose uptake followed Michaelis-Menten kinetics. The K(m) for glucose uptake at 0 plasma insulin (≃10 mM) was similar to those observed for glucose uptake at the other plasma insulin concentrations studied (≃9-12 mM), but its V(max) was less (5.2 vs. 6.4, 18.5, and 26.8 mg · kg-1 · min-1 for ≃20, 80, and 160 U/ml, respectively). These results indicate that in postabsorptive human subjects 75-85% of glucose uptake is noninsulin-mediated and provide additional support for the concept that insulin may increase glucose uptake merely by providing additional transport sites. The method described herein provides an assessment of insulin-dependent glucose uptake in vivo that may prove useful in distinguishing between intrinsic defects of the glucose transport system and those due to defects in insulin action.
UR - http://www.scopus.com/inward/record.url?scp=0020774420&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0020774420&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.1983.244.6.e632
DO - 10.1152/ajpendo.1983.244.6.e632
M3 - Article
C2 - 6344653
AN - SCOPUS:0020774420
SN - 0193-1849
VL - 7
SP - E632-E635
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 6
ER -