Estimating perturbations from experience using neural networks and information transfer

Erik Berger, David Vogt, Steve Grehl, Bernhard Jung, Hani Ben Amor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

In order to ensure safe operation, robots must be able to reliably detect behavior perturbations that result from unexpected physical interactions with their environment and human co-workers. While some robots provide firmware force sensors that generate rough force estimates, more accurate force measurements are usually achieved with dedicated force-torque sensors. However, such sensors are often heavy, expensive and require an additional power supply. In the case of lightweight manipulators, the already limited payload capabilities may be reduced in a significant way. This paper presents an experience-based approach for accurately estimating external forces being applied to a robot without the need for a forcetorque sensor. Using Information Transfer, a subset of sensors relevant to the executed behavior are identified from a larger set of internal sensors. Models mapping robot sensor data to force-torque measurements are learned using a neural network. These models can be used to predict the magnitude and direction of perturbations from affordable, proprioceptive sensors only. Experiments with a UR5 robot show that our method yields force estimates with accuracy comparable to a dedicated force-torque sensor. Moreover, our method yields a substantial improvement in accuracy over force-torque values provided by the robot firmware.

Original languageEnglish (US)
Title of host publicationIROS 2016 - 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages176-181
Number of pages6
ISBN (Electronic)9781509037629
DOIs
StatePublished - Nov 28 2016
Event2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016 - Daejeon, Korea, Republic of
Duration: Oct 9 2016Oct 14 2016

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2016-November
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

Other2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016
Country/TerritoryKorea, Republic of
CityDaejeon
Period10/9/1610/14/16

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Estimating perturbations from experience using neural networks and information transfer'. Together they form a unique fingerprint.

Cite this