Epistemic model to monitor the position of mobile sensing nodes on construction sites with rough location data

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Construction organizations are rapidly engaging in the utilization of infrastructureless identification and localization technologies with the purpose of increasing the visibility of their site resources and, more specifically, of their nonbulk materials. With such infrastructureless technologies, a wireless identification device attached to a nonbulk material becomes a mobile sensing node. Even though relatively inexpensive, infrastructureless technologies result in rough node locations that prevent a reliable assessment of the actual node positions. Thus, an opportunity to characterize multiple handling of materials and, by extension, materials handling processes is being missed. However, efficiently monitoring the position of mobile sensing nodes-the coordinates of which remain unknown-with low-accuracy locations is a nontrivial problem that cannot be likely solved using deterministic or classic probability approaches. This study presents an epistemic model based on belief functions that can feasibly monitor the positions of mobile sensing nodes. The feasibility of the model is compared to empirical evidence. The results demonstrate that epistemic functions can, to a large extent, correctly filter location uncertainties and monitor the movements of mobile sensing nodes.

Original languageEnglish (US)
Pages (from-to)141-150
Number of pages10
JournalJournal of Computing in Civil Engineering
Volume26
Issue number1
DOIs
StatePublished - Jan 2012
Externally publishedYes

Fingerprint

Materials handling
Visibility
Monitoring
Uncertainty

Keywords

  • Automation
  • Construction management
  • Construction methods
  • Construction sites
  • Identification
  • Localization
  • Probability
  • Productivity

ASJC Scopus subject areas

  • Computer Science Applications
  • Civil and Structural Engineering

Cite this

@article{6912890f2f8b4e6aa68206019e76f05c,
title = "Epistemic model to monitor the position of mobile sensing nodes on construction sites with rough location data",
abstract = "Construction organizations are rapidly engaging in the utilization of infrastructureless identification and localization technologies with the purpose of increasing the visibility of their site resources and, more specifically, of their nonbulk materials. With such infrastructureless technologies, a wireless identification device attached to a nonbulk material becomes a mobile sensing node. Even though relatively inexpensive, infrastructureless technologies result in rough node locations that prevent a reliable assessment of the actual node positions. Thus, an opportunity to characterize multiple handling of materials and, by extension, materials handling processes is being missed. However, efficiently monitoring the position of mobile sensing nodes-the coordinates of which remain unknown-with low-accuracy locations is a nontrivial problem that cannot be likely solved using deterministic or classic probability approaches. This study presents an epistemic model based on belief functions that can feasibly monitor the positions of mobile sensing nodes. The feasibility of the model is compared to empirical evidence. The results demonstrate that epistemic functions can, to a large extent, correctly filter location uncertainties and monitor the movements of mobile sensing nodes.",
keywords = "Automation, Construction management, Construction methods, Construction sites, Identification, Localization, Probability, Productivity",
author = "{Grau Torrent}, David",
year = "2012",
month = "1",
doi = "10.1061/(ASCE)CP.1943-5487.0000120",
language = "English (US)",
volume = "26",
pages = "141--150",
journal = "Journal of Computing in Civil Engineering",
issn = "0887-3801",
publisher = "American Society of Civil Engineers (ASCE)",
number = "1",

}

TY - JOUR

T1 - Epistemic model to monitor the position of mobile sensing nodes on construction sites with rough location data

AU - Grau Torrent, David

PY - 2012/1

Y1 - 2012/1

N2 - Construction organizations are rapidly engaging in the utilization of infrastructureless identification and localization technologies with the purpose of increasing the visibility of their site resources and, more specifically, of their nonbulk materials. With such infrastructureless technologies, a wireless identification device attached to a nonbulk material becomes a mobile sensing node. Even though relatively inexpensive, infrastructureless technologies result in rough node locations that prevent a reliable assessment of the actual node positions. Thus, an opportunity to characterize multiple handling of materials and, by extension, materials handling processes is being missed. However, efficiently monitoring the position of mobile sensing nodes-the coordinates of which remain unknown-with low-accuracy locations is a nontrivial problem that cannot be likely solved using deterministic or classic probability approaches. This study presents an epistemic model based on belief functions that can feasibly monitor the positions of mobile sensing nodes. The feasibility of the model is compared to empirical evidence. The results demonstrate that epistemic functions can, to a large extent, correctly filter location uncertainties and monitor the movements of mobile sensing nodes.

AB - Construction organizations are rapidly engaging in the utilization of infrastructureless identification and localization technologies with the purpose of increasing the visibility of their site resources and, more specifically, of their nonbulk materials. With such infrastructureless technologies, a wireless identification device attached to a nonbulk material becomes a mobile sensing node. Even though relatively inexpensive, infrastructureless technologies result in rough node locations that prevent a reliable assessment of the actual node positions. Thus, an opportunity to characterize multiple handling of materials and, by extension, materials handling processes is being missed. However, efficiently monitoring the position of mobile sensing nodes-the coordinates of which remain unknown-with low-accuracy locations is a nontrivial problem that cannot be likely solved using deterministic or classic probability approaches. This study presents an epistemic model based on belief functions that can feasibly monitor the positions of mobile sensing nodes. The feasibility of the model is compared to empirical evidence. The results demonstrate that epistemic functions can, to a large extent, correctly filter location uncertainties and monitor the movements of mobile sensing nodes.

KW - Automation

KW - Construction management

KW - Construction methods

KW - Construction sites

KW - Identification

KW - Localization

KW - Probability

KW - Productivity

UR - http://www.scopus.com/inward/record.url?scp=84860168617&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84860168617&partnerID=8YFLogxK

U2 - 10.1061/(ASCE)CP.1943-5487.0000120

DO - 10.1061/(ASCE)CP.1943-5487.0000120

M3 - Article

AN - SCOPUS:84860168617

VL - 26

SP - 141

EP - 150

JO - Journal of Computing in Civil Engineering

JF - Journal of Computing in Civil Engineering

SN - 0887-3801

IS - 1

ER -