Environmental and biotic controls over aboveground biomass throughout a tropical rain forest

Gregory P. Asner, R. Flint Hughes, Timothy A. Varga, David E. Knapp, Ty Kennedy-Bowdoin

Research output: Contribution to journalArticle

120 Scopus citations

Abstract

The environmental and biotic factors affecting spatial variation in canopy three-dimensional (3-D) structure and aboveground tree biomass (AGB) are poorly understood in tropical rain forests. We combined field measurements and airborne light detection and ranging (lidar) to quantify 3-D structure and AGB across a 5,016 ha rain forest reserve on the northeastern flank of Mauna Kea volcano, Hawaii Island. We compared AGB among native stands dominated by Metrosideros polymorpha found along a 600-1800 m elevation/climate gradient, and on three substrate-age classes of 5, 20, and 65 kyr. We also analyzed how alien tree invasion, canopy species dominance and topographic relief influence AGB levels. Canopy vertical profiles derived from lidar measurements were strong predictors (r 2 = 0.78) of AGB across sites and species. Mean AGB ranged from 48 to 363 Mg ha-1 in native forest stands. Increasing elevation corresponded to a 53-84% decrease in AGB levels, depending upon substrate age. Holding climate constant, changes in substrate age from 5 to 65 kyr corresponded to a 23-53% decline in biomass. Invasion by Psidium cattleianum and Ficus rubiginosa trees resulted in a 19-38% decrease in AGB, with these carbon losses mediated by substrate age. In contrast, the spread of former plantation tree species Fraxinus uhdei corresponded to a 7- to 10-fold increase in biomass. The effects of topographic relief at both local and regional scales were evident in the AGB maps, with poorly drained terrain harboring 76% lower biomass than forests on well-drained relief. Our results quantify the absolute and relative importance of environmental factors controlling spatial variation in tree biomass across a rain forest landscape, and highlight the rapid changes in carbon storage incurred following biological invasion.

Original languageEnglish (US)
Pages (from-to)261-278
Number of pages18
JournalEcosystems
Volume12
Issue number2
DOIs
StatePublished - Feb 1 2009
Externally publishedYes

Keywords

  • Airborne remote sensing
  • Alien invasive species
  • Biological invasion
  • Carbon storage
  • Hawaii
  • Lidar
  • Light detection and ranging
  • Substrate age
  • Tropical forest
  • Vegetation structure

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Environmental Chemistry
  • Ecology

Fingerprint Dive into the research topics of 'Environmental and biotic controls over aboveground biomass throughout a tropical rain forest'. Together they form a unique fingerprint.

  • Cite this