Environment-dependent attack rates of cryptic and aposematic butterflies

Brett M. Seymoure, Andrew Raymundo, Kevin McGraw, W. Owen Mcmillan, Ronald L. Rutowski

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Many organisms have evolved adaptive coloration that reduces their risk of predation. Cryptic coloration reduces the likelihood of detection/recognition by potential predators, while warning or aposematic coloration advertises unprofitability and thereby reduces the likelihood of attack. Although some studies show that aposematic coloration functions better at decreasing attack rate than crypsis, recent work has suggested and demonstrated that crypsis and aposematism are both successful strategies for avoiding predation. Furthermore, the visual environment (e.g., ambient lighting, background) affects the ability for predators to detect prey. We investigated these 2 related hypotheses using 2 well-known visually aposematic species of Heliconius butterflies, which occupy different habitats (open-canopy vs. closed-canopy), and one palatable, cryptic, generalist species Junonia coenia.We tested if the differently colored butterflies differ in attack rates by placing plasticine models of each of the 3 species in 2 different tropical habitats where the butterflies naturally occur: disturbed, open-canopy habitat and forested, closed-canopy habitat. The cryptic model had fewer attacks than one of the aposematic models. Predation rates differed between the 2 habitats, with the open habitat having much higher predation. However, we did not find an interaction between species and habitat type, which is perplexing due to the different aposematic phenotypes naturally occurring in different habitats. Our findings suggest that during the Panamanian dry season avian predation on perched butterflies is not a leading cause in habitat segregation between the 2 aposematic species and demonstrate that cryptically colored animals at rest may be better than aposematic prey at avoiding avian attacks in certain environments.

Original languageEnglish (US)
Pages (from-to)663-669
Number of pages7
JournalCurrent Zoology
Volume64
Issue number5
DOIs
StatePublished - Oct 1 2018

Keywords

  • Avian attacks
  • Camouflage
  • Heliconius
  • Junonia
  • Light environment
  • Plasticine models
  • Predation
  • Warning coloration

ASJC Scopus subject areas

  • Animal Science and Zoology

Fingerprint

Dive into the research topics of 'Environment-dependent attack rates of cryptic and aposematic butterflies'. Together they form a unique fingerprint.

Cite this