### Abstract

We describe a procedure to improve both the accuracy and computational efficiency of finite difference schemes used to simulate the nonlinear PDEs that govern barotropic two-dimensional geophysical fluid dynamics. Our underlying strategy is to reduce the truncation error of a given difference scheme in such a way that the time step restrictions are not changed. To accomplish this reduction, we use information from the governing equations in the case of vanishing time derivatives. Our method is based on a change of variables from fine to coarse grids, which allows us to order the various terms that appear and justify further approximations. These approximations lead to algebraic closures for the new higher-order variables, and finally to a new, enslaved scheme. We demonstrate the utility of the procedure for the shallow water equations in both periodic and closed basins. In the latter case we present results that demonstrate the ability of the enslaved scheme to capture dynamics on scales smaller than those resolved by the original scheme.

Original language | English (US) |
---|---|

Pages (from-to) | 559-573 |

Number of pages | 15 |

Journal | Physica D: Nonlinear Phenomena |

Volume | 98 |

Issue number | 2-4 |

State | Published - 1996 |

Externally published | Yes |

### Fingerprint

### Keywords

- Finite difference methods
- Fluid dynamics
- Nonlinearity
- Numerical simulation
- Shallow water equations

### ASJC Scopus subject areas

- Applied Mathematics
- Statistical and Nonlinear Physics

### Cite this

*Physica D: Nonlinear Phenomena*,

*98*(2-4), 559-573.

**Enslaved finite difference approximations for quasigeostrophic shallow flows.** / Poje, Andrew C.; Jones, Donald; Margolin, Len G.

Research output: Contribution to journal › Article

*Physica D: Nonlinear Phenomena*, vol. 98, no. 2-4, pp. 559-573.

}

TY - JOUR

T1 - Enslaved finite difference approximations for quasigeostrophic shallow flows

AU - Poje, Andrew C.

AU - Jones, Donald

AU - Margolin, Len G.

PY - 1996

Y1 - 1996

N2 - We describe a procedure to improve both the accuracy and computational efficiency of finite difference schemes used to simulate the nonlinear PDEs that govern barotropic two-dimensional geophysical fluid dynamics. Our underlying strategy is to reduce the truncation error of a given difference scheme in such a way that the time step restrictions are not changed. To accomplish this reduction, we use information from the governing equations in the case of vanishing time derivatives. Our method is based on a change of variables from fine to coarse grids, which allows us to order the various terms that appear and justify further approximations. These approximations lead to algebraic closures for the new higher-order variables, and finally to a new, enslaved scheme. We demonstrate the utility of the procedure for the shallow water equations in both periodic and closed basins. In the latter case we present results that demonstrate the ability of the enslaved scheme to capture dynamics on scales smaller than those resolved by the original scheme.

AB - We describe a procedure to improve both the accuracy and computational efficiency of finite difference schemes used to simulate the nonlinear PDEs that govern barotropic two-dimensional geophysical fluid dynamics. Our underlying strategy is to reduce the truncation error of a given difference scheme in such a way that the time step restrictions are not changed. To accomplish this reduction, we use information from the governing equations in the case of vanishing time derivatives. Our method is based on a change of variables from fine to coarse grids, which allows us to order the various terms that appear and justify further approximations. These approximations lead to algebraic closures for the new higher-order variables, and finally to a new, enslaved scheme. We demonstrate the utility of the procedure for the shallow water equations in both periodic and closed basins. In the latter case we present results that demonstrate the ability of the enslaved scheme to capture dynamics on scales smaller than those resolved by the original scheme.

KW - Finite difference methods

KW - Fluid dynamics

KW - Nonlinearity

KW - Numerical simulation

KW - Shallow water equations

UR - http://www.scopus.com/inward/record.url?scp=0001550183&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001550183&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0001550183

VL - 98

SP - 559

EP - 573

JO - Physica D: Nonlinear Phenomena

JF - Physica D: Nonlinear Phenomena

SN - 0167-2789

IS - 2-4

ER -