Enhancing light emission efficiency without color change in post-transition metal chalcogenides

Cong Wang, Shengxue Yang, Hui Cai, Can Ataca, Hui Chen, Xinzheng Zhang, Jingjun Xu, Bin Chen, Kedi Wu, Haoran Zhang, Luqi Liu, Jingbo Li, Jeffrey C. Grossman, Sefaattin Tongay, Qian Liu

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Two-dimensional (2D) materials can take a large amount of mechanical deformation before reaching the fracture limit due to their high Young's modulus, and this in return, provides a way to tune the properties of 2D materials by strain engineering. Previous works have shown that the optical band gap of transition metal chalcogenides (TMDs) can be modulated by strain, resulting in a drift of the photoluminescence (PL) peak position and a decrease (or little change) in PL intensity. Here, we report a member of the post-transition metal chalcogenides (PTMCs), 2D-GaSe sheets, displaying vastly different phenomena under strain. Strained 2D-GaSe emits photons at almost the same wavelength as unstrained material but appears an order of magnitude brighter. In contrast to TMDs, optical spectroscopy measurements reveal that changes in the optical properties are mostly related to the colossal optical absorption anisotropy of GaSe, instead of commonly accepted strain-induced band renormalization. Results suggest that the light-matter interaction and the optical properties of 2D-GaSe can be controlled at will by manipulating the optical absorption.

Original languageEnglish (US)
Pages (from-to)5820-5825
Number of pages6
JournalNanoscale
Volume8
Issue number11
DOIs
StatePublished - Mar 21 2016

ASJC Scopus subject areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'Enhancing light emission efficiency without color change in post-transition metal chalcogenides'. Together they form a unique fingerprint.

Cite this