Enhanced drought resistance of vegetation growth in cities due to urban heat, CO2 domes and O3 troughs

Peng Fu, Leiqiu Hu, Elizabeth A. Ainsworth, Xiaonan Tai, Soe W. Myint, Wenfeng Zhan, Bethany J. Blakely, Carl J. Bernacchi

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Sustained increase in atmospheric CO2 is strongly coupled with rising temperature and persistent droughts. While elevated CO2 promotes photosynthesis and growth of vegetation, drier and warmer climate can potentially negate this benefit, complicating the prediction of future terrestrial carbon dynamics. Manipulative studies such as free air CO2 enrichment (FACE) experiments have been useful for studying the joint effect of global change factors on vegetation growth; however, their results do not easily transfer to natural ecosystems partly due to their short-duration nature and limited consideration of climatic gradients and potential confounding factors, such as O3. Urban environments serve as a useful small-scale analogy of future climate at least in reference to CO2 and temperature enhancements. Here, we develop a data-driven approach using urban environments as test beds for revealing the joint effect of changing temperature and CO2 on vegetation response to drought. Using 75 urban-rural paired plots from three climate zones over the conterminous United States (CONUS), we find vegetation in urban areas exhibits a much stronger resistance to drought than in rural areas. Statistical analysis suggests the drought resistance enhancement of urban vegetation across CONUS is attributed to rising temperature (with a partial correlation coefficient of 0.36) and CO2 (with a partial correlation coefficient of 0.31) and reduced O3 concentration (with a partial correlation coefficient of −0.12) in cities. The controlling factor(s) responsible for urban-rural differences in drought resistance of vegetation vary across climate regions, such as surface O3 gradients in the arid climate, and surface CO2 and O3 gradients in the temperate and continental climates. Thus, our study provides new observational insights on the impacts of competing factors on vegetation growth at a large scale, and ultimately, helps reduce uncertainties in understanding terrestrial carbon dynamics.

Original languageEnglish (US)
Article number124052
JournalEnvironmental Research Letters
Volume16
Issue number12
DOIs
StatePublished - Dec 2021

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • General Environmental Science
  • Public Health, Environmental and Occupational Health

Fingerprint

Dive into the research topics of 'Enhanced drought resistance of vegetation growth in cities due to urban heat, CO2 domes and O3 troughs'. Together they form a unique fingerprint.

Cite this