Energy optimization of lateral motions for autonomous ground vehicles with four-wheel steering control

Fengchen Wang, Peidong Xu, Ao Li, Yan Chen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

In this paper, a hierarchical optimal four-wheel steering (4WS) controller is proposed to enhance the energy saving for vehicle lateral motions. By the integration of the four-wheel vehicle dynamics, wheel dynamics, and tire model, the vehicle propulsion power consumption is derived with respect to the front and rear wheel steering angles as control inputs. In the high level of the proposed controller, an autonomous path following control is developed to provide virtual control inputs including the lateral forces and yaw moment via the dynamic sliding mode control design. In the low level, the high-level virtual control inputs are distributed to the front and rear steering angles, in which the energy optimization problem is solved. The objective function of the optimization problem aims to minimize the vehicle propulsion power consumption and virtual control tracking error. Furthermore, the requirements of the vehicle stability and the path following accuracy are considered in the constraints. Verified by CarSim® and MATLAB/Simulink® co-simulation, the proposed 4WS hierarchical energy optimization controller can successfully reduce the power loss for vehicle lateral motions.

Original languageEnglish (US)
Title of host publicationAdvanced Driver Assistance and Autonomous Technologies; Advances in Control Design Methods; Advances in Robotics; Automotive Systems; Design, Modeling, Analysis, and Control of Assistive and Rehabilitation Devices; Diagnostics and Detection; Dynamics and Control of Human-Robot Systems; Energy Optimization for Intelligent Vehicle Systems; Estimation and Identification; Manufacturing
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791859148
DOIs
StatePublished - 2019
EventASME 2019 Dynamic Systems and Control Conference, DSCC 2019 - Park City, United States
Duration: Oct 8 2019Oct 11 2019

Publication series

NameASME 2019 Dynamic Systems and Control Conference, DSCC 2019
Volume1

Conference

ConferenceASME 2019 Dynamic Systems and Control Conference, DSCC 2019
Country/TerritoryUnited States
CityPark City
Period10/8/1910/11/19

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Energy optimization of lateral motions for autonomous ground vehicles with four-wheel steering control'. Together they form a unique fingerprint.

Cite this