Enabling incremental knowledge transfer for object detection at the edge

Mohammad Farhadi, Mehdi Ghasemi, Sarma Vrudhula, Yezhou Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

Object detection using deep neural networks (DNNs) involves a huge amount of computation which impedes its implementation on resource/energy-limited user-end devices. The reason for the success of DNNs is due to having knowledge over all different domains of observed environments. However, we need a limited knowledge of the observed environment at inference time which can be learned using a shallow neural network (SHNN). In this paper, a systemlevel design is proposed to improve the energy consumption of object detection on the user-end device. An SHNN is deployed on the user-end device to detect objects in the observing environment. Also, a knowledge transfer mechanism is implemented to update the SHNN model using the DNN knowledge when there is a change in the object domain. DNN knowledge can be obtained from a powerful edge device connected to the user-end device through LAN or Wi-Fi. Experiments demonstrate that the energy consumption of the user-end device and the inference time can be improved by 78% and 40% compared with running the deep model on the user-end device.

Original languageEnglish (US)
Title of host publicationProceedings - 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020
PublisherIEEE Computer Society
Pages1591-1599
Number of pages9
ISBN (Electronic)9781728193601
DOIs
StatePublished - Jun 2020
Event2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020 - Virtual, Online, United States
Duration: Jun 14 2020Jun 19 2020

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2020-June
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020
Country/TerritoryUnited States
CityVirtual, Online
Period6/14/206/19/20

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Enabling incremental knowledge transfer for object detection at the edge'. Together they form a unique fingerprint.

Cite this