Empirical constraints on the effects of radiation damage on helium diffusion in zircon

Alyssa J. Anderson, Kip Hodges, Matthijs Van Soest

Research output: Contribution to journalArticle

25 Scopus citations

Abstract

In this study, we empirically evaluate the impact of radiation damage on zircon (U-Th)/He closure temperatures for a suite of zircon crystals from the slowly cooled McClure Mountain syenite of south-central Colorado, USA. We present new zircon, titanite, and apatite conventional (U-Th)/He dates, zircon laser ablation (U-Th)/He and U-Pb dates, and zircon Raman spectra for crystals from the syenite. Titanite and apatite (U-Th)/He dates range from 447 to 523 Ma and 88.0 to 138.9 Ma, respectively, and display no clear correlation between (U-Th)/He date and effective uranium concentration. Conventional zircon (U-Th)/He dates range from 230.3 to 474 Ma, while laser ablation zircon (U-Th)/He dates show even greater dispersion, ranging from 5.31 to 520 Ma. Dates from both zircon (U-Th)/He datasets decrease with increasing alpha dose, indicating that most of the dispersion can be attributed to radiation damage. Alpha dose values for the dated zircon crystals range from effectively zero to 2.15 × 1019 α/g, spanning the complete damage spectrum. We use an independently constrained thermal model to empirically assign a closure temperature to each dated zircon grain. If we assume that this thermal model is robust, the zircon radiation damage accumulation and annealing model of Guenthner et al. (2013) does not accurately predict closure temperatures for many of the analyzed zircon crystals. Raman maps of the zircons dated by laser ablation document complex radiation damage zoning, sometimes revealing crystalline zones in grains with alpha dose values suggestive of amorphous material. Such zoning likely resulted in heterogeneous intra-crystalline helium diffusion and may help explain some of the discrepancies between our empirical findings and the Guenthner et al. (2013) model predictions. Because U-Th zoning is a common feature in zircon, radiation damage zoning is likely to be a concern for most ancient, slowly cooled zircon (U-Th)/He datasets. Whenever possible, multiple mineral-isotopic systems should be employed to add additional, independent constraints to a sample's thermal history.

Original languageEnglish (US)
Pages (from-to)308-322
Number of pages15
JournalGeochimica et Cosmochimica Acta
Volume218
DOIs
StatePublished - Dec 1 2017

Keywords

  • Radiation damage
  • Zircon (U-Th)/He thermochronology

ASJC Scopus subject areas

  • Geochemistry and Petrology

Fingerprint Dive into the research topics of 'Empirical constraints on the effects of radiation damage on helium diffusion in zircon'. Together they form a unique fingerprint.

  • Cite this