Emerging photoluminescence from the dark-exciton phonon replica in monolayer WSe2

Zhipeng Li, Tianmeng Wang, Chenhao Jin, Zhengguang Lu, Zhen Lian, Yuze Meng, Mark Blei, Shiyuan Gao, Takashi Taniguchi, Kenji Watanabe, Tianhui Ren, Sefaattin Tongay, Li Yang, Dmitry Smirnov, Ting Cao, Su Fei Shi

Research output: Contribution to journalArticlepeer-review

106 Scopus citations

Abstract

Tungsten-based monolayer transition metal dichalcogenides host a long-lived “dark” exciton, an electron-hole pair in a spin-triplet configuration. The long lifetime and unique spin properties of the dark exciton provide exciting opportunities to explore light-matter interactions beyond electric dipole transitions. Here we demonstrate that the coupling of the dark exciton and an optically silent chiral phonon enables the intrinsic photoluminescence of the dark-exciton replica in monolayer WSe2. Gate and magnetic-field dependent PL measurements unveil a circularly-polarized replica peak located below the dark exciton by 21.6 meV, equal to E″ phonon energy from Se vibrations. First-principles calculations show that the exciton-phonon interaction selectively couples the spin-forbidden dark exciton to the intravalley spin-allowed bright exciton, permitting the simultaneous emission of a chiral phonon and a circularly-polarized photon. Our discovery and understanding of the phonon replica reveals a chirality dictated emission channel of the phonons and photons, unveiling a new route of manipulating valley-spin.

Original languageEnglish (US)
Article number2469
JournalNature communications
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Emerging photoluminescence from the dark-exciton phonon replica in monolayer WSe2'. Together they form a unique fingerprint.

Cite this