Efficient and Secure Federated Learning With Verifiable Weighted Average Aggregation

Zhen Yang, Ming Zhou, Haiyang Yu, Richard O. Sinnott, Huan Liu

Research output: Contribution to journalArticlepeer-review

Abstract

Federated learning allows a large number of participants to collaboratively train a global model without sharing participant's local data. Participants train local models with their local data and send gradients to the cloud server for aggregation. Unfortunately, as a third party, the cloud server cannot be fully trusted. Existing research has shown that a compromised cloud server can extract sensitive information of participant's local data from gradients. In addition, it can even forge the aggregation result to corrupt the global model without being detected. Therefore, in a secure federated learning system, both the privacy and aggregation correctness of the uploaded gradients should be guaranteed. In this paper, we propose a secure and efficient federated learning scheme with verifiable weighted average aggregation. By adopting the masking technique to encrypt both weighted gradients and data size, our scheme can support the privacy-preserving weighted average aggregation of gradients. Moreover, we design the verifiable aggregation tag and propose an efficient verification method to validate the weighted average aggregation result, which greatly improves the performance of the aggregation verification. Security analysis shows that our scheme is provably secure. Extensive experiments demonstrate the efficiency of our scheme compared with the state-of-the-art approaches.

Original languageEnglish (US)
Pages (from-to)1-12
Number of pages12
JournalIEEE Transactions on Network Science and Engineering
DOIs
StateAccepted/In press - 2022

Keywords

  • Collaborative work
  • Cryptography
  • Data models
  • Federated learning
  • Hash functions
  • Privacy
  • Servers
  • Training
  • homomorphic hash function
  • verifiability
  • weighted average aggregation

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Computer Science Applications
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Efficient and Secure Federated Learning With Verifiable Weighted Average Aggregation'. Together they form a unique fingerprint.

Cite this