Effects of different post-spin stretching conditions on the mechanical properties of synthetic spider silk fibers

Amy E. Albertson, Florence Teulé, Warner Weber, Jeffery Yarger, Randolph V. Lewis

Research output: Contribution to journalArticle

34 Scopus citations


Spider silk is a biomaterial with impressive mechanical properties, resulting in various potential applications. Recent research has focused on producing synthetic spider silk fibers with the same mechanical properties as the native fibers. For this study, three proteins based on the Argiope aurantia Major ampullate Spidroin 2 consensus repeat sequence were expressed, purified and spun into fibers. A number of post-spin draw conditions were tested to determine the effect of each condition on the mechanical properties of the fiber. In all cases, post-spin stretching improved the mechanical properties of the fibers. Aqueous isopropanol was the most effective solution for increasing extensibility, while other solutions worked best for each fiber type for increasing tensile strength. The strain values of the stretched fibers correlated with the length of the proline-rich protein sequence. Structural analysis, including X-ray diffraction and Raman spectroscopy, showed surprisingly little change in the initial as-spun fibers compared with the post-spin stretched fibers.

Original languageEnglish (US)
Pages (from-to)225-234
Number of pages10
JournalJournal of the Mechanical Behavior of Biomedical Materials
StatePublished - Jan 1 2014



  • Argiope aurantia
  • Dragline
  • Mechanical properties
  • Post-spinning
  • Synthetic spider silk fibers

ASJC Scopus subject areas

  • Biomaterials
  • Biomedical Engineering
  • Mechanics of Materials

Cite this