Effects of background noise on generating coherent packets of hairpin vortices

Kyoungyoun Kim, Hyung Jin Sung, Ronald Adrian

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

We examine the autogeneration process by which new hairpin vortices are created from a sufficiently strong hairpin vortex, leading to the formation of a hairpin packet. Emphasis is placed on the effects of background noise on packet formation. The initial conditions are given by conditionally averaged flow fields associated with the second quadrant (Q2) event in the fully turbulent channel flow direct numerical simulation (DNS) database at Reτ=395. The nonlinear evolution of the initial vortical structure is tracked by performing a spectral simulation. Background noise is introduced by adding small amplitude perturbations to the initial field or by imposing momentum forcing. The background noise gives rise to chaotic development of a hairpin packet. The hairpins become asymmetric, leading to much more complicated packet structures than are observed in the symmetric hairpin vortex train of the flow with a clean background. However, the chaotic packets show the same properties as the clean packet in terms of the rate of growth of vertical and spanwise dimensions and the distance between successive vortices, suggesting that the autogeneration mechanism is robust. The background noise leads to a decrease in the minimum value of the Q2 strength required to trigger autogeneration, indicating that background noise enhances autogeneration, especially in the buffer layer. The autogeneration process is more enhanced by the background noise with wavenumbers kx<kz. Conditionally averaged flow fields around the tall attached vortices in the hairpin packet show that they are associated with elongated low-momentum structures in the streamwise direction. Finally, the autogeneration process was tested in a real turbulent environment taken from an instantaneous field of a turbulent channel flow DNS. The generation of secondary hairpin vortices is clearly observed upstream of the primary hairpin.

Original languageEnglish (US)
Article number105107
JournalPhysics of Fluids
Volume20
Issue number10
DOIs
StatePublished - 2008

Fingerprint

horseshoe vortices
background noise
Vortex flow
Direct numerical simulation
Channel flow
channel flow
direct numerical simulation
Flow fields
Momentum
flow distribution
vortices
momentum
Buffer layers
quadrants
upstream
buffers
actuators
perturbation

ASJC Scopus subject areas

  • Condensed Matter Physics

Cite this

Effects of background noise on generating coherent packets of hairpin vortices. / Kim, Kyoungyoun; Sung, Hyung Jin; Adrian, Ronald.

In: Physics of Fluids, Vol. 20, No. 10, 105107, 2008.

Research output: Contribution to journalArticle

@article{5bd252fda57141dd8da47cde10a2789e,
title = "Effects of background noise on generating coherent packets of hairpin vortices",
abstract = "We examine the autogeneration process by which new hairpin vortices are created from a sufficiently strong hairpin vortex, leading to the formation of a hairpin packet. Emphasis is placed on the effects of background noise on packet formation. The initial conditions are given by conditionally averaged flow fields associated with the second quadrant (Q2) event in the fully turbulent channel flow direct numerical simulation (DNS) database at Reτ=395. The nonlinear evolution of the initial vortical structure is tracked by performing a spectral simulation. Background noise is introduced by adding small amplitude perturbations to the initial field or by imposing momentum forcing. The background noise gives rise to chaotic development of a hairpin packet. The hairpins become asymmetric, leading to much more complicated packet structures than are observed in the symmetric hairpin vortex train of the flow with a clean background. However, the chaotic packets show the same properties as the clean packet in terms of the rate of growth of vertical and spanwise dimensions and the distance between successive vortices, suggesting that the autogeneration mechanism is robust. The background noise leads to a decrease in the minimum value of the Q2 strength required to trigger autogeneration, indicating that background noise enhances autogeneration, especially in the buffer layer. The autogeneration process is more enhanced by the background noise with wavenumbers kxz. Conditionally averaged flow fields around the tall attached vortices in the hairpin packet show that they are associated with elongated low-momentum structures in the streamwise direction. Finally, the autogeneration process was tested in a real turbulent environment taken from an instantaneous field of a turbulent channel flow DNS. The generation of secondary hairpin vortices is clearly observed upstream of the primary hairpin.",
author = "Kyoungyoun Kim and Sung, {Hyung Jin} and Ronald Adrian",
year = "2008",
doi = "10.1063/1.3001797",
language = "English (US)",
volume = "20",
journal = "Physics of Fluids",
issn = "1070-6631",
publisher = "American Institute of Physics Publising LLC",
number = "10",

}

TY - JOUR

T1 - Effects of background noise on generating coherent packets of hairpin vortices

AU - Kim, Kyoungyoun

AU - Sung, Hyung Jin

AU - Adrian, Ronald

PY - 2008

Y1 - 2008

N2 - We examine the autogeneration process by which new hairpin vortices are created from a sufficiently strong hairpin vortex, leading to the formation of a hairpin packet. Emphasis is placed on the effects of background noise on packet formation. The initial conditions are given by conditionally averaged flow fields associated with the second quadrant (Q2) event in the fully turbulent channel flow direct numerical simulation (DNS) database at Reτ=395. The nonlinear evolution of the initial vortical structure is tracked by performing a spectral simulation. Background noise is introduced by adding small amplitude perturbations to the initial field or by imposing momentum forcing. The background noise gives rise to chaotic development of a hairpin packet. The hairpins become asymmetric, leading to much more complicated packet structures than are observed in the symmetric hairpin vortex train of the flow with a clean background. However, the chaotic packets show the same properties as the clean packet in terms of the rate of growth of vertical and spanwise dimensions and the distance between successive vortices, suggesting that the autogeneration mechanism is robust. The background noise leads to a decrease in the minimum value of the Q2 strength required to trigger autogeneration, indicating that background noise enhances autogeneration, especially in the buffer layer. The autogeneration process is more enhanced by the background noise with wavenumbers kxz. Conditionally averaged flow fields around the tall attached vortices in the hairpin packet show that they are associated with elongated low-momentum structures in the streamwise direction. Finally, the autogeneration process was tested in a real turbulent environment taken from an instantaneous field of a turbulent channel flow DNS. The generation of secondary hairpin vortices is clearly observed upstream of the primary hairpin.

AB - We examine the autogeneration process by which new hairpin vortices are created from a sufficiently strong hairpin vortex, leading to the formation of a hairpin packet. Emphasis is placed on the effects of background noise on packet formation. The initial conditions are given by conditionally averaged flow fields associated with the second quadrant (Q2) event in the fully turbulent channel flow direct numerical simulation (DNS) database at Reτ=395. The nonlinear evolution of the initial vortical structure is tracked by performing a spectral simulation. Background noise is introduced by adding small amplitude perturbations to the initial field or by imposing momentum forcing. The background noise gives rise to chaotic development of a hairpin packet. The hairpins become asymmetric, leading to much more complicated packet structures than are observed in the symmetric hairpin vortex train of the flow with a clean background. However, the chaotic packets show the same properties as the clean packet in terms of the rate of growth of vertical and spanwise dimensions and the distance between successive vortices, suggesting that the autogeneration mechanism is robust. The background noise leads to a decrease in the minimum value of the Q2 strength required to trigger autogeneration, indicating that background noise enhances autogeneration, especially in the buffer layer. The autogeneration process is more enhanced by the background noise with wavenumbers kxz. Conditionally averaged flow fields around the tall attached vortices in the hairpin packet show that they are associated with elongated low-momentum structures in the streamwise direction. Finally, the autogeneration process was tested in a real turbulent environment taken from an instantaneous field of a turbulent channel flow DNS. The generation of secondary hairpin vortices is clearly observed upstream of the primary hairpin.

UR - http://www.scopus.com/inward/record.url?scp=55849129551&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=55849129551&partnerID=8YFLogxK

U2 - 10.1063/1.3001797

DO - 10.1063/1.3001797

M3 - Article

AN - SCOPUS:55849129551

VL - 20

JO - Physics of Fluids

JF - Physics of Fluids

SN - 1070-6631

IS - 10

M1 - 105107

ER -