Effectiveness of flipped classroom for mechanics of materials

Andrew Lee, Haolin Zhu, James Middleton

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

The flipped classroom is a teaching method that flips the activities done in and out of class, i.e., concepts are learned out of class and problems are worked in class under the supervision of the instructor. Studies have indicated several benefits of the Flipped Classroom (FC), including improved performance and engagement. In the past years, further studies have investigated the benefits of FC in statics, dynamics, and mechanics of materials courses and indicate similar performance benefits. However, these studies address a need for additional studies to validate their results due to the short length of their research or small classroom size. In addition, many of these studies do not measure student attitudes, such as self-efficacy, or the difference in time spent out of class on coursework. The objective of this research is to determine the effectiveness of the flipped classroom system in comparison to the traditional classroom system (TC) in a large mechanics of materials course. Specifically, it aims to measure student performance, student self-efficacy, student attitudes on lecture quality, motivation, attendance, hours spent out of class, practice, and support, and difference in impact between high, middle, and low achieving students. In order to accomplish this, three undergraduate mechanics of materials courses taught during the spring 2015 semester at Arizona State University were analyzed. One FC section served as the experimental group (92 students), while the two TC sections served as the control group (125 students). To analyze student self-efficacy and attitudes, a survey instrument was designed to measure 18 variables and was administered at the end of the semester. Standardized core outcomes were compared between groups to analyze performance. This paper presents the specific course framework used in this FC, detailed results of the quantitative and qualitative analysis, and discussion of strengths and weaknesses. Overall, an overwhelming majority of students were satisfied with FC and would like more of their classes taught using FC. Strengths of this teaching method include greater confidence, better focus, higher satisfaction with practice in class and assistance received from instructors and peers, more freedom to express ideas and questions in class, and less time required outside of class for coursework. Results also suggest that this method has a greater positive impact on high and low achieving students and leads to higher performance. The criticisms made by students focused on lecture videos to have more worked examples. Overall, results suggest that FC is more effective than TC in a large mechanics of materials course.

Original languageEnglish (US)
Title of host publication2016 ASEE Annual Conference and Exposition
PublisherAmerican Society for Engineering Education
Volume2016-June
StatePublished - Jun 26 2016
Event123rd ASEE Annual Conference and Exposition - New Orleans, United States
Duration: Jun 26 2016Jun 29 2016

Other

Other123rd ASEE Annual Conference and Exposition
CountryUnited States
CityNew Orleans
Period6/26/166/29/16

ASJC Scopus subject areas

  • Engineering(all)

Fingerprint Dive into the research topics of 'Effectiveness of flipped classroom for mechanics of materials'. Together they form a unique fingerprint.

Cite this