Effect of precursor mineralogy on the thermal infrared emission spectra of hematite

Application to Martian hematite mineralization

T. D. Glotch, R. V. Morris, Philip Christensen, Thomas Sharp

Research output: Contribution to journalArticle

65 Citations (Scopus)

Abstract

Observations from the Thermal Emission Spectrometer (TES) instrument aboard the Mars Global Surveyor (MGS) spacecraft led to the discovery of two isolated deposits of gray, crystalline hematite located in Meridiani Planum and Aram Chaos and several smaller deposits in Valles Marineris. Several pathways for formation of these hematite deposits have been proposed, involving both aqueous and nonaqueous processes. This work uses the precise shape and position of spectral features in the Martian hematite thermal emission spectrum to constrain hematite formation pathways. Thermal infrared emission spectra, X-ray powder diffraction patterns, Mössbauer spectra, and transmission electron microscope (TEM) photomicrographs were obtained for synthetic and natural hematite samples derived by (1) dehydroxylation of fine-grained goethite and (2) oxidation of magnetite. Collectively, the instrumental analyses show that the mineralogical composition and crystal morphology of precursor samples and the time and temperature conditions under which decomposition to hematite occur determine the crystallinity and crystal morphology of the hematite product. Comparison of laboratory and MGS-TES spectra shows that the Martian hematite spectra correspond closely with a synthetic hematite sample derived by pseudomorphic and topotactic dehyroxylation of goethite at 300°C. Spectra of goethite-precursor samples dehydroxylated at higher temperatures provide increasingly poor fits. Spectra of hematite samples derived by high-temperature thermal oxidation of magnitite are also poorer fits to the Martian hematite spectrum. Thermal emission spectra of goethites heated at lower temperatures ate characterized by the spectral signatures of both hematite and goethite and are not consistent with the Martian spectra. The characteristics that distinguishes the synthetic hematite sample with the Mars-like spectral signature from the other synthetic hematite samples is the high proportion of crystal surfaces that are crystallographic {001} faces (c faces) for the former but not the latter. The high proportion of {001} face area results because the largest surface of the lath-shaped hematite particles is the (001) face, as determined by TEM. Thus a possible formation pathway for hematite in Meridiani Planum, Aram Chaos, and Valles Marineris is precipitation of goethite from aqueous solutions as lath-shaped crystals, possibly as a stain, cement, and/or massive deposit, followed by pseudomorphic and topotactic dehydroxylation to hematite at temperatures below ∼300°C.

Original languageEnglish (US)
JournalJournal of Geophysical Research E: Planets
Volume109
Issue number7
DOIs
StatePublished - Jul 25 2004

Fingerprint

Mineralogy
mineralogy
hematite
emission spectra
infrared spectra
mineralization
Infrared radiation
goethite
thermal emission
Deposits
deposits
crystal
dehydroxylation
Mars
Mars Global Surveyor
effect
Hot Temperature
ferric oxide
Crystals
crystal morphology

Keywords

  • Hematite
  • Mars
  • TES

ASJC Scopus subject areas

  • Oceanography
  • Astronomy and Astrophysics
  • Atmospheric Science
  • Space and Planetary Science
  • Earth and Planetary Sciences (miscellaneous)
  • Geophysics
  • Geochemistry and Petrology

Cite this

@article{ab8a841fa64643ab998ebd366ba72f6a,
title = "Effect of precursor mineralogy on the thermal infrared emission spectra of hematite: Application to Martian hematite mineralization",
abstract = "Observations from the Thermal Emission Spectrometer (TES) instrument aboard the Mars Global Surveyor (MGS) spacecraft led to the discovery of two isolated deposits of gray, crystalline hematite located in Meridiani Planum and Aram Chaos and several smaller deposits in Valles Marineris. Several pathways for formation of these hematite deposits have been proposed, involving both aqueous and nonaqueous processes. This work uses the precise shape and position of spectral features in the Martian hematite thermal emission spectrum to constrain hematite formation pathways. Thermal infrared emission spectra, X-ray powder diffraction patterns, M{\"o}ssbauer spectra, and transmission electron microscope (TEM) photomicrographs were obtained for synthetic and natural hematite samples derived by (1) dehydroxylation of fine-grained goethite and (2) oxidation of magnetite. Collectively, the instrumental analyses show that the mineralogical composition and crystal morphology of precursor samples and the time and temperature conditions under which decomposition to hematite occur determine the crystallinity and crystal morphology of the hematite product. Comparison of laboratory and MGS-TES spectra shows that the Martian hematite spectra correspond closely with a synthetic hematite sample derived by pseudomorphic and topotactic dehyroxylation of goethite at 300°C. Spectra of goethite-precursor samples dehydroxylated at higher temperatures provide increasingly poor fits. Spectra of hematite samples derived by high-temperature thermal oxidation of magnitite are also poorer fits to the Martian hematite spectrum. Thermal emission spectra of goethites heated at lower temperatures ate characterized by the spectral signatures of both hematite and goethite and are not consistent with the Martian spectra. The characteristics that distinguishes the synthetic hematite sample with the Mars-like spectral signature from the other synthetic hematite samples is the high proportion of crystal surfaces that are crystallographic {001} faces (c faces) for the former but not the latter. The high proportion of {001} face area results because the largest surface of the lath-shaped hematite particles is the (001) face, as determined by TEM. Thus a possible formation pathway for hematite in Meridiani Planum, Aram Chaos, and Valles Marineris is precipitation of goethite from aqueous solutions as lath-shaped crystals, possibly as a stain, cement, and/or massive deposit, followed by pseudomorphic and topotactic dehydroxylation to hematite at temperatures below ∼300°C.",
keywords = "Hematite, Mars, TES",
author = "Glotch, {T. D.} and Morris, {R. V.} and Philip Christensen and Thomas Sharp",
year = "2004",
month = "7",
day = "25",
doi = "10.1029/2003JE002224",
language = "English (US)",
volume = "109",
journal = "Journal of Geophysical Research: Atmospheres",
issn = "2169-897X",
publisher = "Wiley-Blackwell",
number = "7",

}

TY - JOUR

T1 - Effect of precursor mineralogy on the thermal infrared emission spectra of hematite

T2 - Application to Martian hematite mineralization

AU - Glotch, T. D.

AU - Morris, R. V.

AU - Christensen, Philip

AU - Sharp, Thomas

PY - 2004/7/25

Y1 - 2004/7/25

N2 - Observations from the Thermal Emission Spectrometer (TES) instrument aboard the Mars Global Surveyor (MGS) spacecraft led to the discovery of two isolated deposits of gray, crystalline hematite located in Meridiani Planum and Aram Chaos and several smaller deposits in Valles Marineris. Several pathways for formation of these hematite deposits have been proposed, involving both aqueous and nonaqueous processes. This work uses the precise shape and position of spectral features in the Martian hematite thermal emission spectrum to constrain hematite formation pathways. Thermal infrared emission spectra, X-ray powder diffraction patterns, Mössbauer spectra, and transmission electron microscope (TEM) photomicrographs were obtained for synthetic and natural hematite samples derived by (1) dehydroxylation of fine-grained goethite and (2) oxidation of magnetite. Collectively, the instrumental analyses show that the mineralogical composition and crystal morphology of precursor samples and the time and temperature conditions under which decomposition to hematite occur determine the crystallinity and crystal morphology of the hematite product. Comparison of laboratory and MGS-TES spectra shows that the Martian hematite spectra correspond closely with a synthetic hematite sample derived by pseudomorphic and topotactic dehyroxylation of goethite at 300°C. Spectra of goethite-precursor samples dehydroxylated at higher temperatures provide increasingly poor fits. Spectra of hematite samples derived by high-temperature thermal oxidation of magnitite are also poorer fits to the Martian hematite spectrum. Thermal emission spectra of goethites heated at lower temperatures ate characterized by the spectral signatures of both hematite and goethite and are not consistent with the Martian spectra. The characteristics that distinguishes the synthetic hematite sample with the Mars-like spectral signature from the other synthetic hematite samples is the high proportion of crystal surfaces that are crystallographic {001} faces (c faces) for the former but not the latter. The high proportion of {001} face area results because the largest surface of the lath-shaped hematite particles is the (001) face, as determined by TEM. Thus a possible formation pathway for hematite in Meridiani Planum, Aram Chaos, and Valles Marineris is precipitation of goethite from aqueous solutions as lath-shaped crystals, possibly as a stain, cement, and/or massive deposit, followed by pseudomorphic and topotactic dehydroxylation to hematite at temperatures below ∼300°C.

AB - Observations from the Thermal Emission Spectrometer (TES) instrument aboard the Mars Global Surveyor (MGS) spacecraft led to the discovery of two isolated deposits of gray, crystalline hematite located in Meridiani Planum and Aram Chaos and several smaller deposits in Valles Marineris. Several pathways for formation of these hematite deposits have been proposed, involving both aqueous and nonaqueous processes. This work uses the precise shape and position of spectral features in the Martian hematite thermal emission spectrum to constrain hematite formation pathways. Thermal infrared emission spectra, X-ray powder diffraction patterns, Mössbauer spectra, and transmission electron microscope (TEM) photomicrographs were obtained for synthetic and natural hematite samples derived by (1) dehydroxylation of fine-grained goethite and (2) oxidation of magnetite. Collectively, the instrumental analyses show that the mineralogical composition and crystal morphology of precursor samples and the time and temperature conditions under which decomposition to hematite occur determine the crystallinity and crystal morphology of the hematite product. Comparison of laboratory and MGS-TES spectra shows that the Martian hematite spectra correspond closely with a synthetic hematite sample derived by pseudomorphic and topotactic dehyroxylation of goethite at 300°C. Spectra of goethite-precursor samples dehydroxylated at higher temperatures provide increasingly poor fits. Spectra of hematite samples derived by high-temperature thermal oxidation of magnitite are also poorer fits to the Martian hematite spectrum. Thermal emission spectra of goethites heated at lower temperatures ate characterized by the spectral signatures of both hematite and goethite and are not consistent with the Martian spectra. The characteristics that distinguishes the synthetic hematite sample with the Mars-like spectral signature from the other synthetic hematite samples is the high proportion of crystal surfaces that are crystallographic {001} faces (c faces) for the former but not the latter. The high proportion of {001} face area results because the largest surface of the lath-shaped hematite particles is the (001) face, as determined by TEM. Thus a possible formation pathway for hematite in Meridiani Planum, Aram Chaos, and Valles Marineris is precipitation of goethite from aqueous solutions as lath-shaped crystals, possibly as a stain, cement, and/or massive deposit, followed by pseudomorphic and topotactic dehydroxylation to hematite at temperatures below ∼300°C.

KW - Hematite

KW - Mars

KW - TES

UR - http://www.scopus.com/inward/record.url?scp=4644256375&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=4644256375&partnerID=8YFLogxK

U2 - 10.1029/2003JE002224

DO - 10.1029/2003JE002224

M3 - Article

VL - 109

JO - Journal of Geophysical Research: Atmospheres

JF - Journal of Geophysical Research: Atmospheres

SN - 2169-897X

IS - 7

ER -