TY - JOUR
T1 - Effect of external pressure on photoinduced electron-transfer reactions in the Marcus inverted region
AU - Chung, Wen Sheng
AU - Turro, Nicholas J.
AU - Gould, Ian R.
AU - Farid, Samir
PY - 1991/1/1
Y1 - 1991/1/1
N2 - The effect of pressure on the quantum yields for formation of free-radical ions (Φions) in the photoinduced bimolecular electron-transfer reactions of the excited-state acceptors 9,10-dicyanoanthracene (DCA), 2,6,9,10-tetracyanoanthracene (TCA), and N-methylacridinium (MA+), with simple alkyl-substituted benzene donors, has been studied in acetonitrile at room temperature The values of Φions, which are determined by the competition between return electron transfer (k-et) and separation (ksep) within the initially formed geminate radical ion pairs, are found to decrease with increasing pressure. The results are discussed in terms of the pressure effects on the individual rate constants k-et and ksep. The k-et process is unique among those electron-transfer reactions whose pressure dependence has been studied since the reactions are in the Marcus inverted region and are nonadiabatic. Measurements of the relative rates of electron transfer as a function of reaction exothermicity allow the effect of pressure on the reorganization energy to be determined. Simple dielectric continuum models predict that the solvent reorganization energy should significantly decrease with applied pressure due to changes in the solvent dielectric constant and refractive index, whereas small increases are observed. Possible reasons for this discrepancy are discussed. Electron transfer from a neutral donor to DCA or TCA forms a radical anion/radical cation pair, whereas electron transfer to MA+ forms a radical/radical cation pair. Different pressure dependencies are observed for Φions when the cyanoantnracene and MA+ acceptors are used which are attributed to differing influences of electrostriction on k-et for the two acceptors.
AB - The effect of pressure on the quantum yields for formation of free-radical ions (Φions) in the photoinduced bimolecular electron-transfer reactions of the excited-state acceptors 9,10-dicyanoanthracene (DCA), 2,6,9,10-tetracyanoanthracene (TCA), and N-methylacridinium (MA+), with simple alkyl-substituted benzene donors, has been studied in acetonitrile at room temperature The values of Φions, which are determined by the competition between return electron transfer (k-et) and separation (ksep) within the initially formed geminate radical ion pairs, are found to decrease with increasing pressure. The results are discussed in terms of the pressure effects on the individual rate constants k-et and ksep. The k-et process is unique among those electron-transfer reactions whose pressure dependence has been studied since the reactions are in the Marcus inverted region and are nonadiabatic. Measurements of the relative rates of electron transfer as a function of reaction exothermicity allow the effect of pressure on the reorganization energy to be determined. Simple dielectric continuum models predict that the solvent reorganization energy should significantly decrease with applied pressure due to changes in the solvent dielectric constant and refractive index, whereas small increases are observed. Possible reasons for this discrepancy are discussed. Electron transfer from a neutral donor to DCA or TCA forms a radical anion/radical cation pair, whereas electron transfer to MA+ forms a radical/radical cation pair. Different pressure dependencies are observed for Φions when the cyanoantnracene and MA+ acceptors are used which are attributed to differing influences of electrostriction on k-et for the two acceptors.
UR - http://www.scopus.com/inward/record.url?scp=0001661076&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001661076&partnerID=8YFLogxK
U2 - 10.1021/j100173a038
DO - 10.1021/j100173a038
M3 - Article
AN - SCOPUS:0001661076
SN - 0022-3654
VL - 95
SP - 7752
EP - 7757
JO - Journal of Physical Chemistry
JF - Journal of Physical Chemistry
IS - 20
ER -