Effect of elastic strain on band edge alignment and position of intermediate band of isolated and coupled quantum dots

Som N. Dahal, Christiana Honsberg

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Solar cells with quantum dot nanostructure absorbing medium have a potential to overcome single junction limit and achieve the solar energy conversion efficiency up to 63%. Self-assembled quantum dots that are grown by using molecular beam epitaxy(MBE) or metal organic chemical vapor deposition (MOCVD) have significant effect of strain on the band edge alignment and hence the confinement potential of electrons and holes. The energetic positions of confined energy states in quantum dots, which, act as intermediate state or band in intermediate band solar cells (IBSCs) are strongly affected by the strain in and around a quantum dot (QD). This work is focused on the calculation of strain distribution and its effect on band structure of QD array for its potential application in quantum dot intermediate band solar cells (QDIBSCs). Strain distribution in and around a QD is calculated using continuum theory of elasticity. When the inter-dot distance in the growth direction is sufficiently close, there is the interaction in strain distribution of QD layers. The strain distribution due to a vertically aligned QD array is calculated from superposition of the strain due to single quantum dot. The strain calculated this way is given as input for the calculation of band edge alignment and the position of QD confined states.

Original languageEnglish (US)
Title of host publicationProgram - 37th IEEE Photovoltaic Specialists Conference, PVSC 2011
Pages2042-2046
Number of pages5
DOIs
StatePublished - Dec 1 2011
Event37th IEEE Photovoltaic Specialists Conference, PVSC 2011 - Seattle, WA, United States
Duration: Jun 19 2011Jun 24 2011

Publication series

NameConference Record of the IEEE Photovoltaic Specialists Conference
ISSN (Print)0160-8371

Other

Other37th IEEE Photovoltaic Specialists Conference, PVSC 2011
CountryUnited States
CitySeattle, WA
Period6/19/116/24/11

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Effect of elastic strain on band edge alignment and position of intermediate band of isolated and coupled quantum dots'. Together they form a unique fingerprint.

Cite this