TY - JOUR
T1 - Effect of dimensionality on the percolation thresholds of various d-dimensional lattices
AU - Torquato, S.
AU - Jiao, Y.
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2013/3/22
Y1 - 2013/3/22
N2 - We show analytically that the [0,1], [1,1], and [2,1] Padé approximants of the mean cluster number S(p) for site and bond percolation on general d-dimensional lattices are upper bounds on this quantity in any Euclidean dimension d, where p is the occupation probability. These results lead to certain lower bounds on the percolation threshold pc that become progressively tighter as d increases and asymptotically exact as d becomes large. These lower-bound estimates depend on the structure of the d-dimensional lattice and whether site or bond percolation is being considered. We obtain explicit bounds on pc for both site and bond percolation on five different lattices: d-dimensional generalizations of the simple-cubic, body-centered-cubic, and face-centered-cubic Bravais lattices as well as the d-dimensional generalizations of the diamond and kagomé (or pyrochlore) non-Bravais lattices. These analytical estimates are used to assess available simulation results across dimensions (up through d=13 in some cases). It is noteworthy that the tightest lower bound provides reasonable estimates of p c in relatively low dimensions and becomes increasingly accurate as d grows. We also derive high-dimensional asymptotic expansions for pc for the 10 percolation problems and compare them to the Bethe-lattice approximation. Finally, we remark on the radius of convergence of the series expansion of S in powers of p as the dimension grows.
AB - We show analytically that the [0,1], [1,1], and [2,1] Padé approximants of the mean cluster number S(p) for site and bond percolation on general d-dimensional lattices are upper bounds on this quantity in any Euclidean dimension d, where p is the occupation probability. These results lead to certain lower bounds on the percolation threshold pc that become progressively tighter as d increases and asymptotically exact as d becomes large. These lower-bound estimates depend on the structure of the d-dimensional lattice and whether site or bond percolation is being considered. We obtain explicit bounds on pc for both site and bond percolation on five different lattices: d-dimensional generalizations of the simple-cubic, body-centered-cubic, and face-centered-cubic Bravais lattices as well as the d-dimensional generalizations of the diamond and kagomé (or pyrochlore) non-Bravais lattices. These analytical estimates are used to assess available simulation results across dimensions (up through d=13 in some cases). It is noteworthy that the tightest lower bound provides reasonable estimates of p c in relatively low dimensions and becomes increasingly accurate as d grows. We also derive high-dimensional asymptotic expansions for pc for the 10 percolation problems and compare them to the Bethe-lattice approximation. Finally, we remark on the radius of convergence of the series expansion of S in powers of p as the dimension grows.
UR - http://www.scopus.com/inward/record.url?scp=84875835907&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84875835907&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.87.032149
DO - 10.1103/PhysRevE.87.032149
M3 - Article
AN - SCOPUS:84875835907
VL - 87
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
SN - 1539-3755
IS - 3
M1 - 032149
ER -