Effect of capping procedure on quantum dot morphology

Implications on optical properties and efficiency of InAs/GaAs quantum dot solar cells

E. C. Weiner, R. Jakomin, D. N. Micha, H. Xie, P. Y. Su, L. D. Pinto, M. P. Pires, Fernando Ponce, P. L. Souza

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

InAs/GaAs quantum dot solar cell structures have been grown by metal organic vapor phase epitaxy, using partial capping of the quantum dots plus a subsequent thermal anneal. The optical characteristics of the InAs quantum dot layers have been studied as a function of the GaAs capping layer thickness and annealing temperature. We observe that a thinner capping layer and a higher annealing temperature result in lower non-radiative defect density and in improved quantum dot size homogeneity, leading to intense and sharp photoluminescence emission at low temperatures. We use an effective mass approximation model to correlate the photoluminescence emission characteristics to the quantum dot composition and dimensions. The resulting InAs/GaAs intermediate band solar cells show the best performance for the case of a 3 nm thick capping layer and annealing at 700 °C.

Original languageEnglish (US)
Pages (from-to)240-248
Number of pages9
JournalSolar Energy Materials and Solar Cells
Volume178
DOIs
StatePublished - May 1 2018

Fingerprint

Semiconductor quantum dots
Solar cells
Optical properties
Annealing
Photoluminescence
Vapor phase epitaxy
Defect density
Temperature
Metals
gallium arsenide
indium arsenide
Chemical analysis

Keywords

  • Intermediate band
  • MOCVD growth
  • Optoelectronic properties
  • Photoluminescence
  • Quantum dot solar cell
  • Transmission electron microscopy

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films

Cite this

Effect of capping procedure on quantum dot morphology : Implications on optical properties and efficiency of InAs/GaAs quantum dot solar cells. / Weiner, E. C.; Jakomin, R.; Micha, D. N.; Xie, H.; Su, P. Y.; Pinto, L. D.; Pires, M. P.; Ponce, Fernando; Souza, P. L.

In: Solar Energy Materials and Solar Cells, Vol. 178, 01.05.2018, p. 240-248.

Research output: Contribution to journalArticle

Weiner, E. C. ; Jakomin, R. ; Micha, D. N. ; Xie, H. ; Su, P. Y. ; Pinto, L. D. ; Pires, M. P. ; Ponce, Fernando ; Souza, P. L. / Effect of capping procedure on quantum dot morphology : Implications on optical properties and efficiency of InAs/GaAs quantum dot solar cells. In: Solar Energy Materials and Solar Cells. 2018 ; Vol. 178. pp. 240-248.
@article{d89495c64fb04e3baa7184b3d523b197,
title = "Effect of capping procedure on quantum dot morphology: Implications on optical properties and efficiency of InAs/GaAs quantum dot solar cells",
abstract = "InAs/GaAs quantum dot solar cell structures have been grown by metal organic vapor phase epitaxy, using partial capping of the quantum dots plus a subsequent thermal anneal. The optical characteristics of the InAs quantum dot layers have been studied as a function of the GaAs capping layer thickness and annealing temperature. We observe that a thinner capping layer and a higher annealing temperature result in lower non-radiative defect density and in improved quantum dot size homogeneity, leading to intense and sharp photoluminescence emission at low temperatures. We use an effective mass approximation model to correlate the photoluminescence emission characteristics to the quantum dot composition and dimensions. The resulting InAs/GaAs intermediate band solar cells show the best performance for the case of a 3 nm thick capping layer and annealing at 700 °C.",
keywords = "Intermediate band, MOCVD growth, Optoelectronic properties, Photoluminescence, Quantum dot solar cell, Transmission electron microscopy",
author = "Weiner, {E. C.} and R. Jakomin and Micha, {D. N.} and H. Xie and Su, {P. Y.} and Pinto, {L. D.} and Pires, {M. P.} and Fernando Ponce and Souza, {P. L.}",
year = "2018",
month = "5",
day = "1",
doi = "10.1016/j.solmat.2018.01.028",
language = "English (US)",
volume = "178",
pages = "240--248",
journal = "Solar Energy Materials and Solar Cells",
issn = "0927-0248",
publisher = "Elsevier",

}

TY - JOUR

T1 - Effect of capping procedure on quantum dot morphology

T2 - Implications on optical properties and efficiency of InAs/GaAs quantum dot solar cells

AU - Weiner, E. C.

AU - Jakomin, R.

AU - Micha, D. N.

AU - Xie, H.

AU - Su, P. Y.

AU - Pinto, L. D.

AU - Pires, M. P.

AU - Ponce, Fernando

AU - Souza, P. L.

PY - 2018/5/1

Y1 - 2018/5/1

N2 - InAs/GaAs quantum dot solar cell structures have been grown by metal organic vapor phase epitaxy, using partial capping of the quantum dots plus a subsequent thermal anneal. The optical characteristics of the InAs quantum dot layers have been studied as a function of the GaAs capping layer thickness and annealing temperature. We observe that a thinner capping layer and a higher annealing temperature result in lower non-radiative defect density and in improved quantum dot size homogeneity, leading to intense and sharp photoluminescence emission at low temperatures. We use an effective mass approximation model to correlate the photoluminescence emission characteristics to the quantum dot composition and dimensions. The resulting InAs/GaAs intermediate band solar cells show the best performance for the case of a 3 nm thick capping layer and annealing at 700 °C.

AB - InAs/GaAs quantum dot solar cell structures have been grown by metal organic vapor phase epitaxy, using partial capping of the quantum dots plus a subsequent thermal anneal. The optical characteristics of the InAs quantum dot layers have been studied as a function of the GaAs capping layer thickness and annealing temperature. We observe that a thinner capping layer and a higher annealing temperature result in lower non-radiative defect density and in improved quantum dot size homogeneity, leading to intense and sharp photoluminescence emission at low temperatures. We use an effective mass approximation model to correlate the photoluminescence emission characteristics to the quantum dot composition and dimensions. The resulting InAs/GaAs intermediate band solar cells show the best performance for the case of a 3 nm thick capping layer and annealing at 700 °C.

KW - Intermediate band

KW - MOCVD growth

KW - Optoelectronic properties

KW - Photoluminescence

KW - Quantum dot solar cell

KW - Transmission electron microscopy

UR - http://www.scopus.com/inward/record.url?scp=85041436512&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85041436512&partnerID=8YFLogxK

U2 - 10.1016/j.solmat.2018.01.028

DO - 10.1016/j.solmat.2018.01.028

M3 - Article

VL - 178

SP - 240

EP - 248

JO - Solar Energy Materials and Solar Cells

JF - Solar Energy Materials and Solar Cells

SN - 0927-0248

ER -