Abstract

A general SI (Susceptible-Infected) epidemic system of host-parasite interactions operating under Allee effects, horizontal and/or vertical transmission, and where infected individuals experience pathogen-induced reductions in reproductive ability, is introduced. The initial focus of this study is on the analyses of the dynamics of density-dependent and frequency-dependent effects on SI models (SI-DD and SI-FD). The analyses identify conditions involving horizontal and vertical transmitted reproductive numbers, namely those used to characterize and contrast SI-FD and SI-DD dynamics. Conditions that lead to disease-driven extinction, or disease-free dynamics, or susceptible-free dynamics, or endemic disease patterns are identified. The SI-DD system supports richer dynamics including limit cycles while the SI-FD model only supports equilibrium dynamics. SI models under "small" horizontal transmission rates may result in disease-free dynamics. SI models under with and inefficient reproductive infectious class may lead to disease-driven extinction scenarios. The SI-DD model supports stable periodic solutions that emerge from an unstable equilibrium provided that either the Allee threshold and/or the disease transmission rate is large; or when the disease has limited influence on the infectives growth rate; and/or when disease-induced mortality is low. Host-parasite systems where diffusion or migration of local populations manage to destabilize them are examples of what is known as diffusive instability. The exploration of SI-dynamics in the presence of dispersal brings up the question of whether or not diffusive instability is a possible outcome. Here, we briefly look at such possibility within two-patch coupled SI-DD and SI-FD systems. It is shown that relative high levels of asymmetry, two modes of transmission, frequency dependence, and Allee effects are capable of supporting diffusive instability.

Original languageEnglish (US)
Pages (from-to)97-116
Number of pages20
JournalMathematical Biosciences
Volume248
Issue number1
DOIs
StatePublished - 2014

Fingerprint

Vertical Transmission
Allee Effect
Horizontal
Model
Extinction
extinction
Host-Parasite Interactions
Endemic Diseases
Reproductive number
support systems
Dependent
host-parasite relationships
Pathogens
disease transmission
Mortality
Limit Cycle
Parasites
Asymmetry
Migration
Patch

Keywords

  • Allee effects
  • Diffusive instability
  • Disease-driven extinction
  • Disease-free dynamics
  • Horizontal transmission
  • Vertical transmission

ASJC Scopus subject areas

  • Medicine(all)
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Modeling and Simulation
  • Statistics and Probability
  • Applied Mathematics

Cite this

@article{8e7cb842ffae42cf9585dc367430d83e,
title = "Dynamics of SI models with both horizontal and vertical transmissions as well as Allee effects",
abstract = "A general SI (Susceptible-Infected) epidemic system of host-parasite interactions operating under Allee effects, horizontal and/or vertical transmission, and where infected individuals experience pathogen-induced reductions in reproductive ability, is introduced. The initial focus of this study is on the analyses of the dynamics of density-dependent and frequency-dependent effects on SI models (SI-DD and SI-FD). The analyses identify conditions involving horizontal and vertical transmitted reproductive numbers, namely those used to characterize and contrast SI-FD and SI-DD dynamics. Conditions that lead to disease-driven extinction, or disease-free dynamics, or susceptible-free dynamics, or endemic disease patterns are identified. The SI-DD system supports richer dynamics including limit cycles while the SI-FD model only supports equilibrium dynamics. SI models under {"}small{"} horizontal transmission rates may result in disease-free dynamics. SI models under with and inefficient reproductive infectious class may lead to disease-driven extinction scenarios. The SI-DD model supports stable periodic solutions that emerge from an unstable equilibrium provided that either the Allee threshold and/or the disease transmission rate is large; or when the disease has limited influence on the infectives growth rate; and/or when disease-induced mortality is low. Host-parasite systems where diffusion or migration of local populations manage to destabilize them are examples of what is known as diffusive instability. The exploration of SI-dynamics in the presence of dispersal brings up the question of whether or not diffusive instability is a possible outcome. Here, we briefly look at such possibility within two-patch coupled SI-DD and SI-FD systems. It is shown that relative high levels of asymmetry, two modes of transmission, frequency dependence, and Allee effects are capable of supporting diffusive instability.",
keywords = "Allee effects, Diffusive instability, Disease-driven extinction, Disease-free dynamics, Horizontal transmission, Vertical transmission",
author = "Yun Kang and Carlos Castillo-Chavez",
year = "2014",
doi = "10.1016/j.mbs.2013.12.006",
language = "English (US)",
volume = "248",
pages = "97--116",
journal = "Mathematical Biosciences",
issn = "0025-5564",
publisher = "Elsevier Inc.",
number = "1",

}

TY - JOUR

T1 - Dynamics of SI models with both horizontal and vertical transmissions as well as Allee effects

AU - Kang, Yun

AU - Castillo-Chavez, Carlos

PY - 2014

Y1 - 2014

N2 - A general SI (Susceptible-Infected) epidemic system of host-parasite interactions operating under Allee effects, horizontal and/or vertical transmission, and where infected individuals experience pathogen-induced reductions in reproductive ability, is introduced. The initial focus of this study is on the analyses of the dynamics of density-dependent and frequency-dependent effects on SI models (SI-DD and SI-FD). The analyses identify conditions involving horizontal and vertical transmitted reproductive numbers, namely those used to characterize and contrast SI-FD and SI-DD dynamics. Conditions that lead to disease-driven extinction, or disease-free dynamics, or susceptible-free dynamics, or endemic disease patterns are identified. The SI-DD system supports richer dynamics including limit cycles while the SI-FD model only supports equilibrium dynamics. SI models under "small" horizontal transmission rates may result in disease-free dynamics. SI models under with and inefficient reproductive infectious class may lead to disease-driven extinction scenarios. The SI-DD model supports stable periodic solutions that emerge from an unstable equilibrium provided that either the Allee threshold and/or the disease transmission rate is large; or when the disease has limited influence on the infectives growth rate; and/or when disease-induced mortality is low. Host-parasite systems where diffusion or migration of local populations manage to destabilize them are examples of what is known as diffusive instability. The exploration of SI-dynamics in the presence of dispersal brings up the question of whether or not diffusive instability is a possible outcome. Here, we briefly look at such possibility within two-patch coupled SI-DD and SI-FD systems. It is shown that relative high levels of asymmetry, two modes of transmission, frequency dependence, and Allee effects are capable of supporting diffusive instability.

AB - A general SI (Susceptible-Infected) epidemic system of host-parasite interactions operating under Allee effects, horizontal and/or vertical transmission, and where infected individuals experience pathogen-induced reductions in reproductive ability, is introduced. The initial focus of this study is on the analyses of the dynamics of density-dependent and frequency-dependent effects on SI models (SI-DD and SI-FD). The analyses identify conditions involving horizontal and vertical transmitted reproductive numbers, namely those used to characterize and contrast SI-FD and SI-DD dynamics. Conditions that lead to disease-driven extinction, or disease-free dynamics, or susceptible-free dynamics, or endemic disease patterns are identified. The SI-DD system supports richer dynamics including limit cycles while the SI-FD model only supports equilibrium dynamics. SI models under "small" horizontal transmission rates may result in disease-free dynamics. SI models under with and inefficient reproductive infectious class may lead to disease-driven extinction scenarios. The SI-DD model supports stable periodic solutions that emerge from an unstable equilibrium provided that either the Allee threshold and/or the disease transmission rate is large; or when the disease has limited influence on the infectives growth rate; and/or when disease-induced mortality is low. Host-parasite systems where diffusion or migration of local populations manage to destabilize them are examples of what is known as diffusive instability. The exploration of SI-dynamics in the presence of dispersal brings up the question of whether or not diffusive instability is a possible outcome. Here, we briefly look at such possibility within two-patch coupled SI-DD and SI-FD systems. It is shown that relative high levels of asymmetry, two modes of transmission, frequency dependence, and Allee effects are capable of supporting diffusive instability.

KW - Allee effects

KW - Diffusive instability

KW - Disease-driven extinction

KW - Disease-free dynamics

KW - Horizontal transmission

KW - Vertical transmission

UR - http://www.scopus.com/inward/record.url?scp=84893475422&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84893475422&partnerID=8YFLogxK

U2 - 10.1016/j.mbs.2013.12.006

DO - 10.1016/j.mbs.2013.12.006

M3 - Article

VL - 248

SP - 97

EP - 116

JO - Mathematical Biosciences

JF - Mathematical Biosciences

SN - 0025-5564

IS - 1

ER -