Dynamics of a Stoichiometric discrete producer-grazer model

Meng Fan, Irakli Loladze, Yang Kuang, James Elser

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

In the last decade, several theoretical models based on stoichiometric principles as well as field and laboratory experiments have shown that nutritional quality of the prey can have dramatic and counterintuitive impact. For example, the predator can become extinct while having plentiful prey in a completely deterministic system. The explanation lies in the bad nutritional quality of the prey that precludes the predator from efficiently converting the consumed food into its own biomass. Another effect is the halt of oscillations that are ubiquitous to predator-prey systems, which happens when bad prey quality drives the system through a saddle-node bifurcation. We note that all the existing models exhibiting these effects are continuous in time. However, in experiments, data are collected on discrete time intervals and many producers in nature have non-overlapping generations. Such scenarios call for discrete equation models. Hence we ask: (1) to what degree stoichiometric effects are just artifacts of continuous time models? (2) Can novel stoichiometric effects arise in discrete systems? Here, by comparing a continuous stoichiometric model to its discrete analog, we show that stoichiometric impacts of prey quality persist in discrete system. Moreover, not only bad prey quality can pull the system out of oscillations but also it can halt chaotic dynamics that surfaces in the discrete system. Stoichiometric mechanisms become increasingly important in our understanding of food web dynamics and our results suggest the robustness of these mechanisms to the discretization of time.

Original languageEnglish (US)
Pages (from-to)347-364
Number of pages18
JournalJournal of Difference Equations and Applications
Volume11
Issue number4-5
DOIs
StatePublished - Apr 2005

Fingerprint

Prey
Discrete Systems
Predator
Predator prey systems
Model
Oscillation
Food Web
Saddle-node Bifurcation
Continuous-time Model
Predator-prey System
Chaotic Dynamics
Discrete Equations
Biomass
Theoretical Model
Experiments
Experiment
Discrete-time
Discretization
Model-based
Robustness

Keywords

  • Bifurcation
  • Chaos
  • Discrete model
  • Predator-prey model
  • Stoichiometry

ASJC Scopus subject areas

  • Algebra and Number Theory
  • Analysis
  • Applied Mathematics

Cite this

Dynamics of a Stoichiometric discrete producer-grazer model. / Fan, Meng; Loladze, Irakli; Kuang, Yang; Elser, James.

In: Journal of Difference Equations and Applications, Vol. 11, No. 4-5, 04.2005, p. 347-364.

Research output: Contribution to journalArticle

@article{290618c0b9c14d71aa9ee348e32e5ce8,
title = "Dynamics of a Stoichiometric discrete producer-grazer model",
abstract = "In the last decade, several theoretical models based on stoichiometric principles as well as field and laboratory experiments have shown that nutritional quality of the prey can have dramatic and counterintuitive impact. For example, the predator can become extinct while having plentiful prey in a completely deterministic system. The explanation lies in the bad nutritional quality of the prey that precludes the predator from efficiently converting the consumed food into its own biomass. Another effect is the halt of oscillations that are ubiquitous to predator-prey systems, which happens when bad prey quality drives the system through a saddle-node bifurcation. We note that all the existing models exhibiting these effects are continuous in time. However, in experiments, data are collected on discrete time intervals and many producers in nature have non-overlapping generations. Such scenarios call for discrete equation models. Hence we ask: (1) to what degree stoichiometric effects are just artifacts of continuous time models? (2) Can novel stoichiometric effects arise in discrete systems? Here, by comparing a continuous stoichiometric model to its discrete analog, we show that stoichiometric impacts of prey quality persist in discrete system. Moreover, not only bad prey quality can pull the system out of oscillations but also it can halt chaotic dynamics that surfaces in the discrete system. Stoichiometric mechanisms become increasingly important in our understanding of food web dynamics and our results suggest the robustness of these mechanisms to the discretization of time.",
keywords = "Bifurcation, Chaos, Discrete model, Predator-prey model, Stoichiometry",
author = "Meng Fan and Irakli Loladze and Yang Kuang and James Elser",
year = "2005",
month = "4",
doi = "10.1080/10236190412331335427",
language = "English (US)",
volume = "11",
pages = "347--364",
journal = "Journal of Difference Equations and Applications",
issn = "1023-6198",
publisher = "Taylor and Francis Ltd.",
number = "4-5",

}

TY - JOUR

T1 - Dynamics of a Stoichiometric discrete producer-grazer model

AU - Fan, Meng

AU - Loladze, Irakli

AU - Kuang, Yang

AU - Elser, James

PY - 2005/4

Y1 - 2005/4

N2 - In the last decade, several theoretical models based on stoichiometric principles as well as field and laboratory experiments have shown that nutritional quality of the prey can have dramatic and counterintuitive impact. For example, the predator can become extinct while having plentiful prey in a completely deterministic system. The explanation lies in the bad nutritional quality of the prey that precludes the predator from efficiently converting the consumed food into its own biomass. Another effect is the halt of oscillations that are ubiquitous to predator-prey systems, which happens when bad prey quality drives the system through a saddle-node bifurcation. We note that all the existing models exhibiting these effects are continuous in time. However, in experiments, data are collected on discrete time intervals and many producers in nature have non-overlapping generations. Such scenarios call for discrete equation models. Hence we ask: (1) to what degree stoichiometric effects are just artifacts of continuous time models? (2) Can novel stoichiometric effects arise in discrete systems? Here, by comparing a continuous stoichiometric model to its discrete analog, we show that stoichiometric impacts of prey quality persist in discrete system. Moreover, not only bad prey quality can pull the system out of oscillations but also it can halt chaotic dynamics that surfaces in the discrete system. Stoichiometric mechanisms become increasingly important in our understanding of food web dynamics and our results suggest the robustness of these mechanisms to the discretization of time.

AB - In the last decade, several theoretical models based on stoichiometric principles as well as field and laboratory experiments have shown that nutritional quality of the prey can have dramatic and counterintuitive impact. For example, the predator can become extinct while having plentiful prey in a completely deterministic system. The explanation lies in the bad nutritional quality of the prey that precludes the predator from efficiently converting the consumed food into its own biomass. Another effect is the halt of oscillations that are ubiquitous to predator-prey systems, which happens when bad prey quality drives the system through a saddle-node bifurcation. We note that all the existing models exhibiting these effects are continuous in time. However, in experiments, data are collected on discrete time intervals and many producers in nature have non-overlapping generations. Such scenarios call for discrete equation models. Hence we ask: (1) to what degree stoichiometric effects are just artifacts of continuous time models? (2) Can novel stoichiometric effects arise in discrete systems? Here, by comparing a continuous stoichiometric model to its discrete analog, we show that stoichiometric impacts of prey quality persist in discrete system. Moreover, not only bad prey quality can pull the system out of oscillations but also it can halt chaotic dynamics that surfaces in the discrete system. Stoichiometric mechanisms become increasingly important in our understanding of food web dynamics and our results suggest the robustness of these mechanisms to the discretization of time.

KW - Bifurcation

KW - Chaos

KW - Discrete model

KW - Predator-prey model

KW - Stoichiometry

UR - http://www.scopus.com/inward/record.url?scp=22544458479&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=22544458479&partnerID=8YFLogxK

U2 - 10.1080/10236190412331335427

DO - 10.1080/10236190412331335427

M3 - Article

AN - SCOPUS:22544458479

VL - 11

SP - 347

EP - 364

JO - Journal of Difference Equations and Applications

JF - Journal of Difference Equations and Applications

SN - 1023-6198

IS - 4-5

ER -