Abstract
In this article, we propose a general predator-prey system where prey is subject to Allee effects and disease with the following unique features: (i) Allee effects built in the reproduction process of prey where infected prey (I- class) has no contribution; (ii) Consuming infected prey would contribute less or negatively to the growth rate of predator (P-class) in comparison to the con- sumption of susceptible prey (S-class). We provide basic dynamical properties for this general model and perform the detailed analysis on a concrete model (SIP-Allee Model) as well as its corresponding model in the absence of Allee effects (SIP-no-Allee Model); we obtain the complete dynamics of both models: (a) SIP-Allee Model may have only one attractor (extinction of all species), two attractors (bi-stability either induced by small values of reproduction number of both disease and predator or induced by competition exclusion), or three attractors (tri-stability); (b) SIP-no-Allee Model may have either one attractor (only S-class survives or the persistence of S and I-class or the persistence of S and P-class) or two attractors (bi-stability with the persistence of S and I-class or the persistence of S and P-class). One of the most interesting findings is that neither models can support the coexistence of all three S, I, P-class. This is caused by the assumption (ii), whose biological implications are that I and P-class are at exploitative competition for S-class whereas I-class cannot be superior and P-class cannot gain signi ficantly from its consumption of I-class. In addition, the comparison study between the dynamics of SIP-Allee Model and SIP-no-Allee Model lead to the following conclusions: 1) In the presence of Allee effects, species are prone to extinction and initial condition plays an important role on the surviving of prey as well as its corresponding predator; 2) In the presence of Allee effects, disease may be able to save prey from the predation-driven extinction and leads to the coexistence of S and I-class while predator can not save the disease-driven extinction. All these findings may have potential applications in conservation biology.
Original language | English (US) |
---|---|
Pages (from-to) | 877-918 |
Number of pages | 42 |
Journal | Mathematical Biosciences and Engineering |
Volume | 11 |
Issue number | 4 |
DOIs | |
State | Published - Aug 2014 |
Keywords
- Allee effect
- Bi-stability
- Disease/predation-driven extinction
- Eco-epidemiological system
- Functional responses
- Tri-stability
ASJC Scopus subject areas
- Modeling and Simulation
- Agricultural and Biological Sciences(all)
- Computational Mathematics
- Applied Mathematics