### Abstract

We develop theory for the dynamics and fluctuations in some cyclic and linear biochemical reactions. We use the approach of maximum caliber, which computes the ensemble of paths taken by the system, given a few experimental observables. This approach may be useful for interpreting single-molecule or few-particle experiments on molecular motors, enzyme reactions, ion-channels, and phosphorylation-driven biological clocks. We consider cycles where all biochemical states are observable. Our method shows how: (1) the noise in cycles increases with cycle size and decreases with the driving force that spins the cycle and (2) provides a recipe for estimating small-number features, such as probability of backward spin in small cycles, from experimental data. The back-spin probability diminishes exponentially with the deviation from equilibrium. We believe this method may also be useful for other few-particle nonequilibrium biochemical reaction systems.

Original language | English (US) |
---|---|

Article number | 031905 |

Journal | Physical Review E - Statistical, Nonlinear, and Soft Matter Physics |

Volume | 82 |

Issue number | 3 |

DOIs | |

State | Published - Sep 15 2010 |

### ASJC Scopus subject areas

- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics

## Fingerprint Dive into the research topics of 'Dynamical fluctuations in biochemical reactions and cycles'. Together they form a unique fingerprint.

## Cite this

*Physical Review E - Statistical, Nonlinear, and Soft Matter Physics*,

*82*(3), [031905]. https://doi.org/10.1103/PhysRevE.82.031905