Distribution of donor states on etched surface of AlGaN/GaN heterostructures

Masataka Higashiwaki, Srabanti Chowdhury, Mao Sheng Miao, Brian L. Swenson, Chris G. Van De Walle, Umesh K. Mishra

Research output: Contribution to journalArticle

51 Scopus citations

Abstract

The dependence of electron density (ns) on AlGaN barrier thickness (dAlGaN) was studied for AlGaN/GaN single heterostructures whose dAlGaN was controlled by low-power Cl-based reactive ion etching (RIE) instead of growth. The samples showed a constant increase not only in ns but also in AlGaN surface barrier height (e φB) with d AlGaN, indicating the existence of low-density and distributed donor states on the AlGaN surface. Such a distribution of donor states differs from the commonly accepted model based on high-density and single-level surface donor states as the source of electrons in the two-dimensional electron gas (2DEG). The presence of a distribution of donor states is confirmed by first-principles calculations for a variety of surface structures for oxidized AlGaN surfaces. Donor states arise from areas of the surface that deviate from the electron-counting rule, leading to occupied surface states in the upper half of the band gap. The oxide formed on the surface after RIE results in a low-density distribution of surface donor states in which the highest occupied levels span the range from 1-2 eV below the AlGaN conduction-band minimum. The density of these states is comparable to the ns in the 2DEG and insufficient to pin the Fermi level, leading to a constant increase in e φB with dAlGaN.

Original languageEnglish (US)
Article number063719
JournalJournal of Applied Physics
Volume108
Issue number6
DOIs
StatePublished - Sep 15 2010

    Fingerprint

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Higashiwaki, M., Chowdhury, S., Miao, M. S., Swenson, B. L., Van De Walle, C. G., & Mishra, U. K. (2010). Distribution of donor states on etched surface of AlGaN/GaN heterostructures. Journal of Applied Physics, 108(6), [063719]. https://doi.org/10.1063/1.3481412