DISTRIBUTED RELAXATION METHODS FOR LINEAR NETWORK FLOW PROBLEMS.

Research output: Contribution to journalConference articlepeer-review

13 Scopus citations

Abstract

A distributed solution of the classical linear minimum-cost network flow problem is considered. A dual problem is formulated which is unconstrained and piecewise linear, and involves a dual variable for each node. A dual algorithm that resembles a Gauss-Seidel relaxation method is proposed. At each iteration the dual variable of a single node is changed on the basis of local information from adjacent nodes. In a distributed setting each node can change its variable independently of the variable changes of other nodes. The algorithm is efficient for some classes of problems, notably for the max-flow problem.

Original languageEnglish (US)
Pages (from-to)2101-2106
Number of pages6
JournalProceedings of the IEEE Conference on Decision and Control
DOIs
StatePublished - 1986
Externally publishedYes

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint Dive into the research topics of 'DISTRIBUTED RELAXATION METHODS FOR LINEAR NETWORK FLOW PROBLEMS.'. Together they form a unique fingerprint.

Cite this