Distributed Memory Guard: Enabling Secure Enclave Computing in NoC-based Architectures

Ghada Dessouky, Mihailo Isakov, Michel A. Kinsy, Pouya Mahmoody, Miguel Mark, Ahmad Reza Sadeghi, Emmanuel Stapf, Shaza Zeitouni

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Emerging applications, like cloud services, are demanding more computational power, while also giving rise to various security and privacy challenges. Current multi-/many-core chip designs boost performance by using Networks-on-Chip (NoC) based architectures. Although NoC-based architectures significantly improve communication concurrency, they have thus far lack adequate security mechanisms such as enforceable process isolation. On the other hand, new security-aware architectures that protect applications and sensitive services in isolated execution environments, i.e., enclaves, have not been extended to provide comprehensive protection for NoC platforms. These enclave-based architectures (i) lack secure enclave-device interaction, (ii) cannot include unmodifiable third-party IP, or (iii) provide flexible enclave memory management.To address these design challenges, we introduce a new hardware security primitive, the Distributed Memory Guard, and design the first security architecture that protects sensitive services in NoC-based enclaves. We provide evaluation of this reference architecture and highlight the fact that one can design a scalable (i.e., NoC-based) and secure (i.e., enclave-based) architecture with minimal hardware complexity and system performance overhead.

Original languageEnglish (US)
Title of host publication2021 58th ACM/IEEE Design Automation Conference, DAC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages985-990
Number of pages6
ISBN (Electronic)9781665432740
DOIs
StatePublished - Dec 5 2021
Externally publishedYes
Event58th ACM/IEEE Design Automation Conference, DAC 2021 - San Francisco, United States
Duration: Dec 5 2021Dec 9 2021

Publication series

NameProceedings - Design Automation Conference
Volume2021-December
ISSN (Print)0738-100X

Conference

Conference58th ACM/IEEE Design Automation Conference, DAC 2021
Country/TerritoryUnited States
CitySan Francisco
Period12/5/2112/9/21

Keywords

  • Enclave
  • Memory Protection
  • Network-on-Chip
  • Secure Processor Design

ASJC Scopus subject areas

  • Computer Science Applications
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Distributed Memory Guard: Enabling Secure Enclave Computing in NoC-based Architectures'. Together they form a unique fingerprint.

Cite this