Distributed estimation with constant modulus signals over multiple access channels

Cihan Tepedelenlioglu, Adarsh B. Narasimhamurthy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

A distributed estimation scheme where the sensors transmit with constant modulus signals over a multiple access channel is considered. The proposed estimator is shown to be strongly consistent for any sensing noise distribution in the i.i.d. case. When the distributions of the sensing noise are not identical, the existence of a bound on the variances is shown to establish strong consistency. The estimator is shown to be asymptotically normal with an asymptotic variance (AsV) that depends on the characteristic function of the sensing noise. Optimization of the AsV is considered with respect to a transmission phase parameter, and simulations are shown to corroborate our analytical results.

Original languageEnglish (US)
Title of host publicationICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Pages2990-2993
Number of pages4
DOIs
Publication statusPublished - 2010
Event2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010 - Dallas, TX, United States
Duration: Mar 14 2010Mar 19 2010

Other

Other2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010
CountryUnited States
CityDallas, TX
Period3/14/103/19/10

    Fingerprint

Keywords

  • Constant modulus
  • Distributed estimation
  • Empirical characteristic function
  • Multiple access channel

ASJC Scopus subject areas

  • Signal Processing
  • Software
  • Electrical and Electronic Engineering

Cite this

Tepedelenlioglu, C., & Narasimhamurthy, A. B. (2010). Distributed estimation with constant modulus signals over multiple access channels. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings (pp. 2990-2993). [5496126] https://doi.org/10.1109/ICASSP.2010.5496126