Dissolved organic carbon in terrestrial ecosystems: Synthesis and a model

Jason C. Neff, Gregory P. Asner

Research output: Contribution to journalArticlepeer-review

576 Scopus citations

Abstract

The movement of dissolved organic carbon (DOC) through soils is an important process for the transport of carbon within ecosystems and the formation of soil organic matter. In some cases, DOC fluxes may also contribute to the carbon balance of terrestrial ecosystems; in most ecosystems, they are an important source of energy, carbon, and nutrient transfers from terrestrial to aquatic ecosystems. Despite their importance for terrestrial and aquatic biogeochemistry, these fluxes are rarely represented in conceptual or numerical models of terrestrial biogeochemistry. In part, this is due to the lack of a comprehensive understanding of the suite of processes that control DOC dynamics in soils. In this article, we synthesize information on the geochemical and biological factors that control DOC fluxes through soils. We focus on conceptual issues and quantitative evaluations of key process rates to present a general numerical model of DOC dynamics. We then test the sensitivity of the model to variation in the controlling parameters to highlight both the significance of DOC fluxes to terrestrial carbon processes and the key uncertainties that require additional experiments and data. Simulation model results indicate the importance of representing both root carbon inputs and soluble carbon fluxes to predict the quantity and distribution of soil carbon in soil layers. For a test case in a temperate forest, DOC contributed 25% of the total soil profile carbon, whereas roots provided the remainder. The analysis also shows that physical factors - most notably, sorption dynamics and hydrology - play the dominant role in regulating DOC losses from terrestrial ecosystems but that interactions between hydrology and microbial-DOC relationships are important in regulating the fluxes of DOC in the litter and surface soil horizons. The model also indicates that DOC fluxes to deeper soil layers can support a large fraction (up to 30%) of microbial activity below 40 cm.

Original languageEnglish (US)
Pages (from-to)29-48
Number of pages20
JournalEcosystems
Volume4
Issue number1
DOIs
StatePublished - 2001
Externally publishedYes

Keywords

  • DOC
  • Dissolved carbon
  • Fluxes
  • Model
  • Soil

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Environmental Chemistry
  • Ecology

Fingerprint

Dive into the research topics of 'Dissolved organic carbon in terrestrial ecosystems: Synthesis and a model'. Together they form a unique fingerprint.

Cite this