Disorder in Ho2Ti2−xZrxO7: pyrochlore to defect fluorite solid solution series

Devon L. Drey, Eric C. O'Quinn, Tamilarasan Subramani, Kristina Lilova, Gianguido Baldinozzi, Igor M. Gussev, Antonio F. Fuentes, Joerg C. Neuefeind, Michelle Everett, David Sprouster, Alexandra Navrotsky, Rodney C. Ewing, Maik Lang

Research output: Contribution to journalArticlepeer-review

Abstract

Pyrochlore (A2B2O7) is an important, isometric structure-type because of its large variety of compositions and structural derivatives that are generally related to different disordering mechanisms at various spatial scales. The disordering is key to understanding variations in properties, such as magnetic behavior or ionic conduction. Neutron and X-ray total scattering methods were used to investigate the degree of structural disorder in the Ho2Ti2−xZrxO7(x= 0.0-2.0, Δx= 0.25) solid solution series as a function of the Zr-content,x. Ordered pyrochlores (Fd3̄m) disorder to defect fluorite (Fm3̄m)viacation and anion disordering. Total scattering experiments with sensitivity to the cation and anion sublattices provide unique insight into the underlying atomic processes. Using simultaneous Rietveld refinement (long-range structure) and small-box refinement PDF analysis (short-range structure), we show that the series undergoes a rapid transformation from pyrochlore to defect fluorite atx≈ 1.2, while the short-range structure exhibits a linear increase in a local weberite-type phase,C2221, over the entire composition range. Enthalpies of formation from the oxides etermined using high temperature oxide melt solution calorimetry support the structural data and provide insight into the effect of local ordering on the energetics of disorder. The measured enthalpies of mixing are negative and are fit by a regular solution parameter ofW= −31.8 ± 3.7 kJ mol−1. However, the extensive short-range ordering determined from the structural analysis strongly suggests that the entropies of mixing must be far less positive than implied by the random mixing of a regular solution. We propose a local disordering scheme involving the pyrochlore 48f to 8a site oxygen Frenkel defect that creates 7-coordinated Zr sites contained within local weberite-type coherent nanodomains. Thus, the solid solution is best described as a mixture of two phases, with the weberite-type nanodomains triggering the long-range structural transformation to defect fluorite after accumulation above a critical concentration (50% Ti replaced by Zr).

Original languageEnglish (US)
Pages (from-to)34632-34650
Number of pages19
JournalRSC Advances
Volume10
Issue number57
DOIs
StatePublished - Sep 18 2020

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Disorder in Ho<sub>2</sub>Ti<sub>2−x</sub>Zr<sub>x</sub>O<sub>7</sub>: pyrochlore to defect fluorite solid solution series'. Together they form a unique fingerprint.

Cite this