TY - GEN
T1 - Discriminative K-means for clustering
AU - Ye, Jieping
AU - Zhao, Zheng
AU - Wu, Mingrui
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2009
Y1 - 2009
N2 - We present a theoretical study on the discriminative clustering framework, recently proposed for simultaneous subspace selection via linear discriminant analysis (LDA) and clustering. Empirical results have shown its favorable performance in comparison with several other popular clustering algorithms. However, the inherent relationship between subspace selection and clustering in this framework is not well understood, due to the iterative nature of the algorithm. We show in this paper that this iterative subspace selection and clustering is equivalent to kernel K-means with a specific kernel Gram matrix. This provides significant and new insights into the nature of this subspace selection procedure. Based on this equivalence relationship, we propose the Discriminative K-means (DisKmeans) algorithm for simultaneous LDA subspace selection and clustering, as well as an automatic parameter estimation procedure. We also present the nonlinear extension of DisKmeans using kernels. We show that the learning of the kernel matrix over a convex set of pre-specified kernel matrices can be incorporated into the clustering formulation. The connection between DisKmeans and several other clustering algorithms is also analyzed. The presented theories and algorithms are evaluated through experiments on a collection of benchmark data sets.
AB - We present a theoretical study on the discriminative clustering framework, recently proposed for simultaneous subspace selection via linear discriminant analysis (LDA) and clustering. Empirical results have shown its favorable performance in comparison with several other popular clustering algorithms. However, the inherent relationship between subspace selection and clustering in this framework is not well understood, due to the iterative nature of the algorithm. We show in this paper that this iterative subspace selection and clustering is equivalent to kernel K-means with a specific kernel Gram matrix. This provides significant and new insights into the nature of this subspace selection procedure. Based on this equivalence relationship, we propose the Discriminative K-means (DisKmeans) algorithm for simultaneous LDA subspace selection and clustering, as well as an automatic parameter estimation procedure. We also present the nonlinear extension of DisKmeans using kernels. We show that the learning of the kernel matrix over a convex set of pre-specified kernel matrices can be incorporated into the clustering formulation. The connection between DisKmeans and several other clustering algorithms is also analyzed. The presented theories and algorithms are evaluated through experiments on a collection of benchmark data sets.
UR - http://www.scopus.com/inward/record.url?scp=84858787727&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84858787727&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84858787727
SN - 160560352X
SN - 9781605603520
T3 - Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference
BT - Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference
T2 - 21st Annual Conference on Neural Information Processing Systems, NIPS 2007
Y2 - 3 December 2007 through 6 December 2007
ER -